Einstein-v6-7B / README.md
Weyaxi's picture
Adding AWQ quants (#5)
71fbffe verified
|
raw
history blame
10.1 kB
metadata
language:
  - en
license: other
tags:
  - axolotl
  - generated_from_trainer
  - Mistral
  - instruct
  - finetune
  - chatml
  - gpt4
  - synthetic data
  - science
  - physics
  - chemistry
  - biology
  - math
base_model: alpindale/Mistral-7B-v0.2-hf
datasets:
  - allenai/ai2_arc
  - camel-ai/physics
  - camel-ai/chemistry
  - camel-ai/biology
  - camel-ai/math
  - metaeval/reclor
  - openbookqa
  - mandyyyyii/scibench
  - derek-thomas/ScienceQA
  - TIGER-Lab/ScienceEval
  - jondurbin/airoboros-3.2
  - LDJnr/Capybara
  - Cot-Alpaca-GPT4-From-OpenHermes-2.5
  - STEM-AI-mtl/Electrical-engineering
  - knowrohit07/saraswati-stem
  - sablo/oasst2_curated
  - lmsys/lmsys-chat-1m
  - TIGER-Lab/MathInstruct
  - bigbio/med_qa
  - meta-math/MetaMathQA-40K
  - openbookqa
  - piqa
  - metaeval/reclor
  - derek-thomas/ScienceQA
  - scibench
  - sciq
  - Open-Orca/SlimOrca
  - migtissera/Synthia-v1.3
  - TIGER-Lab/ScienceEval
  - allenai/WildChat
  - microsoft/orca-math-word-problems-200k
  - openchat/openchat_sharegpt4_dataset
  - teknium/GPTeacher-General-Instruct
  - m-a-p/CodeFeedback-Filtered-Instruction
  - totally-not-an-llm/EverythingLM-data-V3
  - HuggingFaceH4/no_robots
  - OpenAssistant/oasst_top1_2023-08-25
  - WizardLM/WizardLM_evol_instruct_70k
model-index:
  - name: Einstein-v6-7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 63.57
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 82.76
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 62.23
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 52.02
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.61
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.53
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6-7B
          name: Open LLM Leaderboard

image/png

🔬 Einstein-v6-7B

This model is a full fine-tuned version of alpindale/Mistral-7B-v0.2-hf on diverse datasets.

This model is finetuned using 8xRTX3090 + 1xRTXA6000 using axolotl.

This model's training was sponsored by sablo.ai.

See axolotl config

axolotl version: 0.4.0

base_model: alpindale/Mistral-7B-v0.2-hf
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: chatml
datasets:
  - path: data/merged_all.json
    ds_type: json
    type: alpaca
    conversation: chatml

  - path: data/gpteacher-instruct-special-alpaca.json
    ds_type: json
    type: gpteacher
    conversation: chatml

  - path: data/wizardlm_evol_instruct_70k_random_half.json
    ds_type: json
    type: alpaca
    conversation: chatml

  - path: data/capybara_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml

  - path: data/synthia-v1.3_sharegpt_12500.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/cot_alpaca_gpt4_extracted_openhermes_2.5_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml

  - path: data/slimorca_dedup_filtered_95k_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/airoboros_3.2_without_contextual_slimorca_orca_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/allenai_wild_chat_gpt4_english_toxic_random_half_4k_sharegpt.json
    ds_type: json
    type: sharegpt
    strict: false
    conversation: chatml  

  - path: data/pippa_bagel_repo_3k_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/gpt4_data_lmys_1m_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/sharegpt_gpt4_english.json
    ds_type: json
    type: sharegpt
    conversation: chatml

  - path: data/no_robots_sharegpt.json
    ds_type: json
    type: sharegpt
    strict: false
    conversation: chatml

  - path: data/oasst_top1_from_fusechatmixture_sharegpt.json
    ds_type: json
    type: sharegpt
    strict: false
    conversation: chatml

  - path: data/everythinglm-data-v3_sharegpt.json
    ds_type: json
    type: sharegpt
    strict: false
    conversation: chatml

dataset_prepared_path: last_run_prepared
# val_set_size: 0.005
val_set_size: 0.0

do_bench_eval: true

output_dir: ./Einstein-v6-7B-model

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: Einstein
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/Einstein-v6-7B

save_safetensors: true

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 3 # changed
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 2 # changed
debug:

deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "<|im_end|>"
  unk_token: "<unk>"
tokens:
  - "<|im_start|>"

💬 Prompt Template

You can use this prompt template while using the model:

ChatML

<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>

This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method:

messages = [
    {"role": "system", "content": "You are helpful AI asistant."},
    {"role": "user", "content": "Hello!"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)

🔄 Quantizationed versions

GGUF @bartowski

ExLlamaV2 @bartowski

AWQ @solidrust

🎯 Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 67.12
AI2 Reasoning Challenge (25-Shot) 63.57
HellaSwag (10-Shot) 82.76
MMLU (5-Shot) 62.23
TruthfulQA (0-shot) 52.02
Winogrande (5-shot) 78.61
GSM8k (5-shot) 63.53

🤖 Additional information about training

This model is full fine-tuned for 2 epoch.

Total number of steps was 2412.

Loss graph

image/png


🤝 Acknowledgments

Thanks to sablo.ai for sponsoring this model.

Thanks to all the dataset authors mentioned in the datasets section.

Thanks to axolotl for making the repository I used to make this model.

Thanks to all open source AI community.

Built with Axolotl

If you would like to support me:

☕ Buy Me a Coffee