WhitePeak's picture
Update README.md
18a6666
metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: bert-base-cased-Korean-sentiment
    results: []
datasets:
  - WhitePeak/shopping_review
language:
  - ko

bert-base-cased-Korean-sentiment

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2338
  • Accuracy: 0.9234
  • F1: 0.9238

Model description

This is a fine-tuned model for a sentiment analysis for the Korean language based on customer reviews in the Korean language

Intended uses & limitations

from transformers import pipeline

sentiment_model = pipeline(model="WhitePeak/bert-base-cased-Korean-sentiment")
sentiment_mode("매우 좋아")

Result:

LABEL_0: negative
LABEL_1: positive

Training and evaluation data

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3