|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch CodeShellGPT model.""" |
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
) |
|
from .configuration_codeshell import CodeShellConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
@torch.jit.script |
|
def upcast_masked_softmax( |
|
x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype |
|
): |
|
input_dtype = x.dtype |
|
x = x.to(softmax_dtype) * scale |
|
x = torch.where(mask, x, mask_value) |
|
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype) |
|
return x |
|
|
|
|
|
@torch.jit.script |
|
def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype): |
|
input_dtype = x.dtype |
|
x = x.to(softmax_dtype) * scale |
|
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype) |
|
return x |
|
|
|
|
|
@torch.jit.script |
|
def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor): |
|
x = torch.where(mask, x, mask_value) |
|
x = torch.nn.functional.softmax(x, dim=-1) |
|
return x |
|
|
|
|
|
class LlamaRotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding): |
|
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) |
|
|
|
|
|
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding): |
|
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): |
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class CodeShellAttention(nn.Module): |
|
def __init__(self, config, layer_idx=None): |
|
super().__init__() |
|
self.mask_value = None |
|
|
|
self.position_embedding_type = config.position_embedding_type |
|
self.rope_scaling = config.rope_scaling |
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
|
self.group_query_attention = config.group_query_attention |
|
self.num_query_groups = config.num_query_groups |
|
|
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
self.kv_heads = config.num_query_groups if self.group_query_attention else self.num_heads |
|
self.kv_dim = self.kv_heads * self.head_dim |
|
self.split_size = self.embed_dim |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
|
|
self.scale_attn_weights = config.scale_attn_weights |
|
|
|
self.layer_idx = layer_idx |
|
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 |
|
self.scale_attention_softmax_in_fp32 = ( |
|
config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32 |
|
) |
|
|
|
self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim) |
|
|
|
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
if self.position_embedding_type == "rope": |
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
if self.rope_scaling is None: |
|
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings) |
|
else: |
|
scaling_type = self.rope_scaling["type"] |
|
scaling_factor = self.rope_scaling["factor"] |
|
if scaling_type == "linear": |
|
self.rotary_emb = LlamaLinearScalingRotaryEmbedding( |
|
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor |
|
) |
|
elif scaling_type == "dynamic": |
|
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
|
|
def _get_mask_value(self, device, dtype): |
|
|
|
if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device: |
|
self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device) |
|
return self.mask_value |
|
|
|
def _attn(self, query, key, value, attention_mask=None, head_mask=None): |
|
dtype = query.dtype |
|
softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype |
|
upcast = dtype != softmax_dtype |
|
|
|
unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1 |
|
scale_factor = unscale**-1 |
|
if self.scale_attn_weights: |
|
scale_factor /= self.head_dim**0.5 |
|
|
|
|
|
output_size = (query.size(1), |
|
query.size(2), |
|
query.size(0), |
|
key.size(0)) |
|
attn_view = (output_size[0]*output_size[1], output_size[2], output_size[3]) |
|
|
|
|
|
query = query.reshape(output_size[2], |
|
output_size[0] * output_size[1], -1) |
|
|
|
key = key.reshape(output_size[3], |
|
output_size[0] * output_size[1], -1) |
|
attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype) |
|
if query.device.type == "cpu": |
|
|
|
|
|
|
|
attn_weights = torch.zeros_like(attn_weights) |
|
beta = 1 |
|
else: |
|
beta = 0 |
|
|
|
attn_weights = torch.baddbmm(attn_weights, |
|
query.transpose(0, 1), |
|
key.transpose(0, 1).transpose(1, 2), |
|
beta=beta, alpha=scale_factor).reshape(output_size) |
|
|
|
if upcast: |
|
|
|
|
|
if attention_mask is None: |
|
attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype) |
|
else: |
|
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype) |
|
attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype) |
|
else: |
|
if attention_mask is not None: |
|
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype) |
|
|
|
|
|
attn_weights = torch.where(attention_mask, attn_weights, mask_value) |
|
|
|
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
attn_weights = attn_weights.reshape(attn_view) |
|
|
|
|
|
|
|
|
|
|
|
output_size = (value.size(1), |
|
value.size(2), |
|
query.size(0), |
|
value.size(3)) |
|
|
|
|
|
value = value.reshape(value.size(0), |
|
output_size[0] * output_size[1], -1) |
|
attn_output = torch.bmm(attn_weights, value.transpose(0, 1)) |
|
|
|
|
|
attn_output = attn_output.reshape(*output_size) |
|
|
|
attn_output = attn_output.permute(2, 0, 1, 3).contiguous() |
|
|
|
|
|
attn_output = attn_output.reshape(attn_output.size(0), attn_output.size(1), -1) |
|
|
|
return attn_output, attn_weights |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
layer_past: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Union[ |
|
Tuple[torch.Tensor, Optional[torch.Tensor]], |
|
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]], |
|
]: |
|
if self.group_query_attention: |
|
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2) |
|
else: |
|
|
|
|
|
|
|
query, key_value = ( |
|
self.c_attn(hidden_states) |
|
.reshape(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim) |
|
.transpose(1, 2) |
|
.split((self.head_dim, 2 * self.head_dim), dim=3) |
|
) |
|
|
|
query = query.reshape(query.size(0), query.size(1), -1, self.head_dim) |
|
|
|
key, value = key_value.split((self.head_dim*self.num_query_groups, self.head_dim*self.num_query_groups), dim=-1) |
|
|
|
key = key.reshape(key.size(0), key.size(1), -1, self.head_dim) |
|
value = value.reshape(value.size(0), value.size(1), -1, self.head_dim) |
|
|
|
key = key.repeat_interleave( |
|
self.num_heads // self.num_query_groups, |
|
dim = 2 |
|
) |
|
value = value.repeat_interleave( |
|
self.num_heads // self.num_query_groups, |
|
dim = 2 |
|
) |
|
|
|
if self.position_embedding_type == "rope": |
|
kv_seq_len = key.shape[-3] |
|
if layer_past is not None: |
|
kv_seq_len += layer_past[0].shape[-3] |
|
|
|
cos, sin = self.rotary_emb(value, seq_len=kv_seq_len) |
|
query = query.transpose(1, 2).contiguous() |
|
key = key.transpose(1, 2).contiguous() |
|
query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids) |
|
query = query.transpose(1, 2).contiguous() |
|
key = key.transpose(1, 2).contiguous() |
|
|
|
if layer_past is not None: |
|
key = torch.cat((layer_past[0], key), dim=-3) |
|
value = torch.cat((layer_past[1], value), dim=-3) |
|
present = (key, value) if use_cache else None |
|
|
|
attn_output, attn_weights = self._attn(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1), attention_mask, head_mask) |
|
|
|
attn_output = attn_output.transpose(0, 1).reshape(hidden_states.shape) |
|
attn_output = self.c_proj(attn_output) |
|
attn_output = self.resid_dropout(attn_output) |
|
|
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
if self.group_query_attention: |
|
|
|
attn_weights = attn_weights.transpose(1, 2) |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class CodeShellMLP(nn.Module): |
|
def __init__(self, intermediate_size, config): |
|
super().__init__() |
|
embed_dim = config.hidden_size |
|
self.c_fc = nn.Linear(embed_dim, intermediate_size) |
|
self.c_proj = nn.Linear(intermediate_size, embed_dim) |
|
self.act = ACT2FN[config.activation_function] |
|
self.dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
|
|
def forward(self, hidden_states: Optional[Tuple[torch.Tensor]]) -> torch.Tensor: |
|
hidden_states = self.c_fc(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.c_proj(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class CodeShellBlock(nn.Module): |
|
def __init__(self, config, layer_idx=None): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size |
|
|
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
self.attn = CodeShellAttention(config, layer_idx=layer_idx) |
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.mlp = CodeShellMLP(self.inner_dim, config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[Tuple[torch.Tensor]], |
|
layer_past: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Union[ |
|
Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor] |
|
]: |
|
residual = hidden_states |
|
hidden_states = self.ln_1(hidden_states) |
|
attn_outputs = self.attn( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attn_outputs[0] |
|
|
|
outputs = attn_outputs[1:] |
|
|
|
hidden_states = attn_output + residual |
|
|
|
residual = hidden_states |
|
hidden_states = self.ln_2(hidden_states) |
|
feed_forward_hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = residual + feed_forward_hidden_states |
|
|
|
if use_cache: |
|
outputs = (hidden_states,) + outputs |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class CodeShellPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = CodeShellConfig |
|
base_model_prefix = "transformer" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["CodeShellBlock"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, (CodeShellMLP, CodeShellAttention)): |
|
|
|
|
|
|
|
|
|
|
|
|
|
module.c_proj.weight.data.normal_( |
|
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)) |
|
) |
|
module.c_proj._is_hf_initialized = True |
|
elif isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, CodeShellModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
GPT_BIGCODE_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`CodeShellConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
GPT_BIGCODE_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`): |
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else |
|
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input |
|
sequence tokens in the vocabulary. |
|
|
|
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as |
|
`input_ids`. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
past_key_values (`Tuple[torch.Tensor]` of length `config.n_layers`): |
|
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see |
|
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have |
|
their past given to this model should not be passed as `input_ids` as they have already been computed. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for |
|
`past_key_values`. In other words, the `attention_mask` always has to have the length: |
|
`len(past_key_values) + len(input_ids)` |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
|
|
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see |
|
`past_key_values`). |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare GPT_BIGCODE Model transformer outputting raw hidden-states without any specific head on top.", |
|
GPT_BIGCODE_START_DOCSTRING, |
|
) |
|
class CodeShellModel(CodeShellPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.group_query_attention = config.group_query_attention |
|
self.num_query_groups = config.num_query_groups |
|
self.position_embedding_type = config.position_embedding_type |
|
self.embed_dim = config.hidden_size |
|
|
|
self.wte = nn.Embedding(config.vocab_size, self.embed_dim) |
|
if self.position_embedding_type == "learned_absolute": |
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) |
|
else: |
|
pass |
|
|
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
self.h = nn.ModuleList([CodeShellBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)]) |
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
|
|
max_positions = config.max_position_embeddings |
|
self.register_buffer( |
|
"bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.wte = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.reshape(-1, input_shape[-1]) |
|
batch_size = input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size = inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.reshape(-1, input_shape[-1]) |
|
if position_ids is not None: |
|
position_ids = position_ids.reshape(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
past_length = past_key_values[0][0].size(-3) |
|
|
|
if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_length > 0: |
|
position_ids = position_ids[:, past_length : input_shape[-1] + past_length :] |
|
elif position_ids is None: |
|
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0).reshape(-1, input_shape[-1]) |
|
|
|
|
|
query_length = input_shape[-1] |
|
key_length = past_length + query_length |
|
self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length] |
|
|
|
if attention_mask is not None: |
|
self_attention_mask = self_attention_mask * attention_mask.reshape(batch_size, 1, -1).to( |
|
dtype=torch.bool, device=self_attention_mask.device |
|
) |
|
|
|
|
|
|
|
attention_mask = self_attention_mask.unsqueeze(1) |
|
|
|
encoder_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
if self.position_embedding_type == "learned_absolute": |
|
position_embeds = self.wpe(position_ids) |
|
hidden_states = hidden_states + position_embeds |
|
|
|
if token_type_ids is not None: |
|
token_type_embeds = self.wte(token_type_ids) |
|
hidden_states = hidden_states + token_type_embeds |
|
|
|
hidden_states = self.drop(hidden_states) |
|
|
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
|
|
presents = [] if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache, output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
None, |
|
attention_mask, |
|
position_ids, |
|
head_mask[i], |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask[i], |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache: |
|
presents.append(outputs[1]) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
hidden_states = hidden_states.reshape(output_shape) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, presents, all_hidden_states, all_self_attentions] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
GPT_BIGCODE_START_DOCSTRING, |
|
) |
|
class CodeShellForCausalLM(CodeShellPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = CodeShellModel(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def quantize(self, bits: int): |
|
try: |
|
import bitsandbytes |
|
from .quantizer import quantize_online |
|
except ImportError: |
|
raise ImportError(f"Needs bitsandbytes to run quantize.") |
|
return quantize_online(self, bits) |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past_key_values: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
lm_logits = self.lm_head(hidden_states) |
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous().to(shift_logits.device) |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.reshape(-1)) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|