ruixie commited on
Commit
232b618
1 Parent(s): be141ff

Delete modeling_shell.py

Browse files
Files changed (1) hide show
  1. modeling_shell.py +0 -858
modeling_shell.py DELETED
@@ -1,858 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 The Bigcode team and HuggingFace Inc. team.
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """PyTorch Shell model."""
15
- import math
16
- from typing import List, Optional, Tuple, Union
17
-
18
- import torch
19
- import torch.utils.checkpoint
20
- from torch import nn
21
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
22
-
23
- from transformers.activations import ACT2FN
24
- from transformers.modeling_outputs import (
25
- BaseModelOutputWithPastAndCrossAttentions,
26
- CausalLMOutputWithCrossAttentions,
27
- )
28
- from transformers.modeling_utils import PreTrainedModel
29
- from transformers.utils import (
30
- add_start_docstrings,
31
- add_start_docstrings_to_model_forward,
32
- logging,
33
- )
34
- from .configuration_shell import ShellConfig
35
-
36
-
37
- logger = logging.get_logger(__name__)
38
-
39
- # Fused kernels
40
- # Use separate functions for each case because conditionals prevent kernel fusion.
41
- # TODO: Could have better fused kernels depending on scaling, dropout and head mask.
42
- # Is it doable without writing 32 functions?
43
- @torch.jit.script
44
- def upcast_masked_softmax(
45
- x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
46
- ):
47
- input_dtype = x.dtype
48
- x = x.to(softmax_dtype) * scale
49
- x = torch.where(mask, x, mask_value)
50
- x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
51
- return x
52
-
53
-
54
- @torch.jit.script
55
- def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
56
- input_dtype = x.dtype
57
- x = x.to(softmax_dtype) * scale
58
- x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
59
- return x
60
-
61
-
62
- @torch.jit.script
63
- def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
64
- x = torch.where(mask, x, mask_value)
65
- x = torch.nn.functional.softmax(x, dim=-1)
66
- return x
67
-
68
-
69
- class ShellRotaryEmbedding(torch.nn.Module):
70
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
71
- super().__init__()
72
-
73
- self.dim = dim
74
- self.max_position_embeddings = max_position_embeddings
75
- self.base = base
76
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
77
- self.register_buffer("inv_freq", inv_freq)
78
-
79
- # Build here to make `torch.jit.trace` work.
80
- self._set_cos_sin_cache(
81
- seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
82
- )
83
-
84
- def _set_cos_sin_cache(self, seq_len, device, dtype):
85
- self.max_seq_len_cached = seq_len
86
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
87
-
88
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
89
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
90
- emb = torch.cat((freqs, freqs), dim=-1)
91
- self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
92
- self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
93
-
94
- def forward(self, x, seq_len=None):
95
- # x: [bs, num_attention_heads, seq_len, head_size]
96
- if seq_len > self.max_seq_len_cached:
97
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
98
-
99
- return (
100
- self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
101
- self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
102
- )
103
-
104
-
105
- class ShellLinearScalingRotaryEmbedding(ShellRotaryEmbedding):
106
- """ShellRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
107
-
108
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
109
- self.scaling_factor = scaling_factor
110
- super().__init__(dim, max_position_embeddings, base, device)
111
-
112
- def _set_cos_sin_cache(self, seq_len, device, dtype):
113
- self.max_seq_len_cached = seq_len
114
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
115
- t = t / self.scaling_factor
116
-
117
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
118
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
119
- emb = torch.cat((freqs, freqs), dim=-1)
120
- self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
121
- self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
122
-
123
-
124
- class ShellDynamicNTKScalingRotaryEmbedding(ShellRotaryEmbedding):
125
- """ShellRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
126
-
127
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
128
- self.scaling_factor = scaling_factor
129
- super().__init__(dim, max_position_embeddings, base, device)
130
-
131
- def _set_cos_sin_cache(self, seq_len, device, dtype):
132
- self.max_seq_len_cached = seq_len
133
-
134
- if seq_len > self.max_position_embeddings:
135
- base = self.base * (
136
- (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
137
- ) ** (self.dim / (self.dim - 2))
138
- inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
139
- self.register_buffer("inv_freq", inv_freq)
140
-
141
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
142
-
143
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
144
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
145
- emb = torch.cat((freqs, freqs), dim=-1)
146
- self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
147
- self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
148
-
149
- def rotate_half(x):
150
- """Rotates half the hidden dims of the input."""
151
- x1 = x[..., : x.shape[-1] // 2]
152
- x2 = x[..., x.shape[-1] // 2 :]
153
- return torch.cat((-x2, x1), dim=-1)
154
-
155
-
156
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
157
- # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
158
- cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
159
- sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
160
- cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
161
- sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
162
- q_embed = (q * cos) + (rotate_half(q) * sin)
163
- k_embed = (k * cos) + (rotate_half(k) * sin)
164
- return q_embed, k_embed
165
-
166
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
167
- """
168
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
169
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
170
- """
171
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
172
- if n_rep == 1:
173
- return hidden_states
174
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
175
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
176
-
177
- class ShellAttention(nn.Module):
178
- def __init__(self, config, layer_idx=None):
179
- super().__init__()
180
- self.mask_value = None
181
-
182
- self.position_embedding_type = config.position_embedding_type
183
- self.rope_scaling = config.rope_scaling
184
- self.max_position_embeddings = config.max_position_embeddings
185
-
186
- self.group_query_attention = config.group_query_attention
187
- self.num_query_groups = config.num_query_groups
188
-
189
- self.embed_dim = config.hidden_size
190
- self.num_heads = config.num_attention_heads
191
- self.head_dim = self.embed_dim // self.num_heads
192
- self.kv_heads = config.num_query_groups if self.group_query_attention else self.num_heads
193
- self.kv_dim = self.kv_heads * self.head_dim
194
- self.split_size = self.embed_dim
195
- if self.head_dim * self.num_heads != self.embed_dim:
196
- raise ValueError(
197
- f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
198
- f" {self.num_heads})."
199
- )
200
-
201
- self.layer_idx = layer_idx
202
-
203
- self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)
204
- self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
205
-
206
- self.attn_dropout = nn.Dropout(config.attn_pdrop)
207
- self.resid_dropout = nn.Dropout(config.resid_pdrop)
208
-
209
- if self.position_embedding_type == "rope":
210
- self._init_rope()
211
-
212
- def _init_rope(self):
213
- if self.rope_scaling is None:
214
- self.rotary_emb = ShellRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
215
- else:
216
- scaling_type = self.rope_scaling["type"]
217
- scaling_factor = self.rope_scaling["factor"]
218
- if scaling_type == "linear":
219
- self.rotary_emb = ShellLinearScalingRotaryEmbedding(
220
- self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
221
- )
222
- elif scaling_type == "dynamic":
223
- self.rotary_emb = ShellDynamicNTKScalingRotaryEmbedding(
224
- self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
225
- )
226
- else:
227
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
228
-
229
-
230
- def _get_mask_value(self, device, dtype):
231
- # torch.where expects a tensor. We use a cache to avoid recreating it every time.
232
- if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
233
- self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
234
- return self.mask_value
235
-
236
- def forward(
237
- self,
238
- hidden_states: torch.Tensor,
239
- layer_past: Optional[torch.Tensor] = None,
240
- attention_mask: Optional[torch.Tensor] = None,
241
- position_ids: Optional[torch.LongTensor] = None,
242
- head_mask: Optional[torch.Tensor] = None,
243
- encoder_hidden_states: Optional[torch.Tensor] = None,
244
- encoder_attention_mask: Optional[torch.Tensor] = None,
245
- use_cache: Optional[bool] = False,
246
- output_attentions: Optional[bool] = False,
247
- ) -> Union[
248
- Tuple[torch.Tensor, Optional[torch.Tensor]],
249
- Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
250
- ]:
251
- bsz, q_len, _ = hidden_states.size()
252
- query_states, key_states, value_states = self.c_attn(hidden_states).split((self.embed_dim, self.kv_dim, self.kv_dim), dim=2)
253
-
254
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
255
- key_states = key_states.view(bsz, q_len, self.num_query_groups, self.head_dim).transpose(1, 2)
256
- value_states = value_states.view(bsz, q_len, self.num_query_groups, self.head_dim).transpose(1, 2)
257
-
258
- kv_seq_len = key_states.shape[-2]
259
- if past_key_value is not None:
260
- kv_seq_len += past_key_value[0].shape[-2]
261
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
262
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
263
-
264
- if past_key_value is not None:
265
- # reuse k, v, self_attention
266
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
267
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
268
-
269
- past_key_value = (key_states, value_states) if use_cache else None
270
-
271
- # repeat k/v heads if n_kv_heads < n_heads
272
- key_states = repeat_kv(key_states, self.num_key_value_groups)
273
- value_states = repeat_kv(value_states, self.num_key_value_groups)
274
-
275
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
276
-
277
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
278
- raise ValueError(
279
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
280
- f" {attn_weights.size()}"
281
- )
282
-
283
- if attention_mask is not None:
284
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
285
- raise ValueError(
286
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
287
- )
288
- attn_weights = attn_weights + attention_mask
289
-
290
- # upcast attention to fp32
291
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
292
- attn_output = torch.matmul(attn_weights, value_states)
293
-
294
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
295
- raise ValueError(
296
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
297
- f" {attn_output.size()}"
298
- )
299
-
300
- attn_output = attn_output.transpose(1, 2).contiguous()
301
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
302
-
303
- attn_output = self.o_proj(attn_output)
304
-
305
- outputs = (attn_output, past_key_value)
306
- if output_attentions:
307
- outputs += (attn_weights,)
308
-
309
- return outputs # a, present, (attentions)
310
-
311
-
312
- class ShellMLP(nn.Module):
313
- def __init__(self, intermediate_size, config):
314
- super().__init__()
315
- embed_dim = config.hidden_size
316
- self.c_fc = nn.Linear(embed_dim, intermediate_size)
317
- self.c_proj = nn.Linear(intermediate_size, embed_dim)
318
- self.act = ACT2FN[config.activation_function]
319
- self.dropout = nn.Dropout(config.resid_pdrop)
320
-
321
- # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
322
- def forward(self, hidden_states: Optional[Tuple[torch.Tensor]]) -> torch.Tensor:
323
- hidden_states = self.c_fc(hidden_states)
324
- hidden_states = self.act(hidden_states)
325
- hidden_states = self.c_proj(hidden_states)
326
- hidden_states = self.dropout(hidden_states)
327
- return hidden_states
328
-
329
-
330
- class ShellBlock(nn.Module):
331
- def __init__(self, config, layer_idx=None):
332
- super().__init__()
333
- hidden_size = config.hidden_size
334
- self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
335
-
336
- self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
337
- self.attn = ShellAttention(config, layer_idx=layer_idx)
338
- self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
339
-
340
- self.mlp = ShellMLP(self.inner_dim, config)
341
-
342
- def forward(
343
- self,
344
- hidden_states: Optional[Tuple[torch.Tensor]],
345
- layer_past: Optional[torch.Tensor] = None,
346
- attention_mask: Optional[torch.Tensor] = None,
347
- position_ids: Optional[torch.LongTensor] = None,
348
- head_mask: Optional[torch.Tensor] = None,
349
- encoder_hidden_states: Optional[torch.Tensor] = None,
350
- encoder_attention_mask: Optional[torch.Tensor] = None,
351
- use_cache: Optional[bool] = False,
352
- output_attentions: Optional[bool] = False,
353
- ) -> Union[
354
- Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
355
- ]:
356
- residual = hidden_states
357
- hidden_states = self.ln_1(hidden_states)
358
- attn_outputs = self.attn(
359
- hidden_states,
360
- layer_past=layer_past,
361
- attention_mask=attention_mask,
362
- position_ids=position_ids,
363
- head_mask=head_mask,
364
- use_cache=use_cache,
365
- output_attentions=output_attentions,
366
- )
367
- attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
368
-
369
- outputs = attn_outputs[1:]
370
- # residual connection
371
- hidden_states = attn_output + residual
372
-
373
- residual = hidden_states
374
- hidden_states = self.ln_2(hidden_states)
375
- feed_forward_hidden_states = self.mlp(hidden_states)
376
- # residual connection
377
- hidden_states = residual + feed_forward_hidden_states
378
-
379
- if use_cache:
380
- outputs = (hidden_states,) + outputs
381
- else:
382
- outputs = (hidden_states,) + outputs[1:]
383
-
384
- return outputs # hidden_states, present, (attentions, cross_attentions)
385
-
386
-
387
- class ShellPreTrainedModel(PreTrainedModel):
388
- """
389
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
390
- models.
391
- """
392
-
393
- config_class = ShellConfig
394
- base_model_prefix = "transformer"
395
- supports_gradient_checkpointing = True
396
- _no_split_modules = ["ShellBlock"]
397
- _skip_keys_device_placement = "past_key_values"
398
-
399
- def __init__(self, *inputs, **kwargs):
400
- super().__init__(*inputs, **kwargs)
401
-
402
- def _init_weights(self, module):
403
- """Initialize the weights."""
404
- if isinstance(module, (ShellMLP, ShellAttention)):
405
- # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
406
- # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
407
- # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
408
- # > -- GPT-2 :: https://openai.com/blog/better-language-models/
409
- #
410
- # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
411
- module.c_proj.weight.data.normal_(
412
- mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
413
- )
414
- module.c_proj._is_hf_initialized = True
415
- elif isinstance(module, nn.Linear):
416
- # Slightly different from the TF version which uses truncated_normal for initialization
417
- # cf https://github.com/pytorch/pytorch/pull/5617
418
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
419
- if module.bias is not None:
420
- module.bias.data.zero_()
421
- elif isinstance(module, nn.Embedding):
422
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
423
- if module.padding_idx is not None:
424
- module.weight.data[module.padding_idx].zero_()
425
- elif isinstance(module, nn.LayerNorm):
426
- module.bias.data.zero_()
427
- module.weight.data.fill_(1.0)
428
-
429
- # Copied from transformers.models.gpt2.modeling_gpt2.GPT2PreTrainedModel._set_gradient_checkpointing with GPT2->Shell
430
- def _set_gradient_checkpointing(self, module, value=False):
431
- if isinstance(module, ShellModel):
432
- module.gradient_checkpointing = value
433
-
434
-
435
- GPT_BIGCODE_START_DOCSTRING = r"""
436
-
437
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
438
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
439
- etc.)
440
-
441
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
442
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
443
- and behavior.
444
-
445
- Parameters:
446
- config ([`ShellConfig`]): Model configuration class with all the parameters of the model.
447
- Initializing with a config file does not load the weights associated with the model, only the
448
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
449
- """
450
-
451
- GPT_BIGCODE_INPUTS_DOCSTRING = r"""
452
- Args:
453
- input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`):
454
- `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
455
- `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
456
- sequence tokens in the vocabulary.
457
-
458
- If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
459
- `input_ids`.
460
-
461
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
462
- [`PreTrainedTokenizer.__call__`] for details.
463
-
464
- [What are input IDs?](../glossary#input-ids)
465
- past_key_values (`Tuple[torch.Tensor]` of length `config.n_layers`):
466
- Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
467
- `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
468
- their past given to this model should not be passed as `input_ids` as they have already been computed.
469
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
470
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
471
-
472
- - 1 for tokens that are **not masked**,
473
- - 0 for tokens that are **masked**.
474
-
475
- If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
476
- `past_key_values`. In other words, the `attention_mask` always has to have the length:
477
- `len(past_key_values) + len(input_ids)`
478
-
479
- [What are attention masks?](../glossary#attention-mask)
480
- token_type_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*):
481
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
482
- 1]`:
483
-
484
- - 0 corresponds to a *sentence A* token,
485
- - 1 corresponds to a *sentence B* token.
486
-
487
- [What are token type IDs?](../glossary#token-type-ids)
488
- position_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
489
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
490
- config.max_position_embeddings - 1]`.
491
-
492
- [What are position IDs?](../glossary#position-ids)
493
- head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
494
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
495
-
496
- - 1 indicates the head is **not masked**,
497
- - 0 indicates the head is **masked**.
498
-
499
- inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
500
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
501
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
502
- model's internal embedding lookup matrix.
503
-
504
- If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
505
- `past_key_values`).
506
- use_cache (`bool`, *optional*):
507
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
508
- `past_key_values`).
509
- output_attentions (`bool`, *optional*):
510
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
511
- tensors for more detail.
512
- output_hidden_states (`bool`, *optional*):
513
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
514
- more detail.
515
- return_dict (`bool`, *optional*):
516
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
517
- """
518
-
519
-
520
- @add_start_docstrings(
521
- "The bare GPT_BIGCODE Model transformer outputting raw hidden-states without any specific head on top.",
522
- GPT_BIGCODE_START_DOCSTRING,
523
- )
524
- class ShellModel(ShellPreTrainedModel):
525
- def __init__(self, config):
526
- super().__init__(config)
527
- self.group_query_attention = config.group_query_attention
528
- self.num_query_groups = config.num_query_groups
529
- self.position_embedding_type = config.position_embedding_type
530
- self.embed_dim = config.hidden_size
531
-
532
- self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
533
- if self.position_embedding_type == "learned_absolute":
534
- self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
535
- else:
536
- pass
537
-
538
- self.drop = nn.Dropout(config.embd_pdrop)
539
- self.h = nn.ModuleList([ShellBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
540
- self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
541
-
542
- max_positions = config.max_position_embeddings
543
- self.register_buffer(
544
- "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
545
- )
546
-
547
- self.gradient_checkpointing = False
548
-
549
- # Initialize weights and apply final processing
550
- self.post_init()
551
-
552
- def get_input_embeddings(self):
553
- return self.wte
554
-
555
- def set_input_embeddings(self, new_embeddings):
556
- self.wte = new_embeddings
557
-
558
- @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
559
- def forward(
560
- self,
561
- input_ids: Optional[torch.Tensor] = None,
562
- past_key_values: Optional[List[torch.Tensor]] = None,
563
- attention_mask: Optional[torch.Tensor] = None,
564
- token_type_ids: Optional[torch.Tensor] = None,
565
- position_ids: Optional[torch.Tensor] = None,
566
- head_mask: Optional[torch.Tensor] = None,
567
- inputs_embeds: Optional[torch.Tensor] = None,
568
- encoder_hidden_states: Optional[torch.Tensor] = None,
569
- encoder_attention_mask: Optional[torch.Tensor] = None,
570
- use_cache: Optional[bool] = None,
571
- output_attentions: Optional[bool] = None,
572
- output_hidden_states: Optional[bool] = None,
573
- return_dict: Optional[bool] = None,
574
- ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
575
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
576
- output_hidden_states = (
577
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
578
- )
579
- use_cache = use_cache if use_cache is not None else self.config.use_cache
580
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
581
-
582
- if input_ids is not None and inputs_embeds is not None:
583
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
584
- elif input_ids is not None:
585
- input_shape = input_ids.size()
586
- input_ids = input_ids.reshape(-1, input_shape[-1])
587
- batch_size = input_ids.shape[0]
588
- elif inputs_embeds is not None:
589
- input_shape = inputs_embeds.size()[:-1]
590
- batch_size = inputs_embeds.shape[0]
591
- else:
592
- raise ValueError("You have to specify either input_ids or inputs_embeds")
593
-
594
- if batch_size <= 0:
595
- raise ValueError("batch_size has to be defined and > 0")
596
-
597
- device = input_ids.device if input_ids is not None else inputs_embeds.device
598
-
599
- if token_type_ids is not None:
600
- token_type_ids = token_type_ids.reshape(-1, input_shape[-1])
601
- if position_ids is not None:
602
- position_ids = position_ids.reshape(-1, input_shape[-1])
603
-
604
- if past_key_values is None:
605
- past_length = 0
606
- past_key_values = tuple([None] * len(self.h))
607
- else:
608
- past_length = past_key_values[0][0].size(-3)
609
-
610
- if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
611
- # create position_ids on the fly for batch generation
612
- position_ids = attention_mask.long().cumsum(-1) - 1
613
- position_ids.masked_fill_(attention_mask == 0, 1)
614
- if past_length > 0:
615
- position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
616
- elif position_ids is None:
617
- position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
618
- position_ids = position_ids.unsqueeze(0).reshape(-1, input_shape[-1])
619
-
620
- # Self-attention mask.
621
- query_length = input_shape[-1]
622
- key_length = past_length + query_length
623
- self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
624
-
625
- if attention_mask is not None:
626
- self_attention_mask = self_attention_mask * attention_mask.reshape(batch_size, 1, -1).to(
627
- dtype=torch.bool, device=self_attention_mask.device
628
- )
629
-
630
- # MQA models: (batch_size, query_length, n_heads, key_length)
631
- # MHA models: (batch_size, n_heads, query_length, key_length)
632
- attention_mask = self_attention_mask.unsqueeze(1)
633
-
634
- encoder_attention_mask = None
635
-
636
- # Prepare head mask if needed
637
- # 1.0 in head_mask indicate we keep the head
638
- # attention_probs has shape bsz x n_heads x N x N
639
- # head_mask has shape n_layer x batch x n_heads x N x N
640
- head_mask = self.get_head_mask(head_mask, self.config.n_layer)
641
-
642
- if inputs_embeds is None:
643
- inputs_embeds = self.wte(input_ids)
644
-
645
- hidden_states = inputs_embeds
646
- if self.position_embedding_type == "learned_absolute":
647
- position_embeds = self.wpe(position_ids)
648
- hidden_states = hidden_states + position_embeds
649
-
650
- if token_type_ids is not None:
651
- token_type_embeds = self.wte(token_type_ids)
652
- hidden_states = hidden_states + token_type_embeds
653
-
654
- hidden_states = self.drop(hidden_states)
655
-
656
- output_shape = input_shape + (hidden_states.size(-1),)
657
-
658
- presents = [] if use_cache else None
659
- all_self_attentions = () if output_attentions else None
660
- all_hidden_states = () if output_hidden_states else None
661
- for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
662
- if output_hidden_states:
663
- all_hidden_states = all_hidden_states + (hidden_states,)
664
-
665
- if self.gradient_checkpointing and self.training:
666
-
667
- def create_custom_forward(module):
668
- def custom_forward(*inputs):
669
- # None for past_key_value
670
- return module(*inputs, use_cache, output_attentions)
671
-
672
- return custom_forward
673
-
674
- outputs = torch.utils.checkpoint.checkpoint(
675
- create_custom_forward(block),
676
- hidden_states,
677
- None,
678
- attention_mask,
679
- position_ids,
680
- head_mask[i],
681
- encoder_hidden_states,
682
- encoder_attention_mask,
683
- )
684
- else:
685
- outputs = block(
686
- hidden_states,
687
- layer_past=layer_past,
688
- attention_mask=attention_mask,
689
- position_ids=position_ids,
690
- head_mask=head_mask[i],
691
- encoder_hidden_states=encoder_hidden_states,
692
- encoder_attention_mask=encoder_attention_mask,
693
- use_cache=use_cache,
694
- output_attentions=output_attentions,
695
- )
696
-
697
- hidden_states = outputs[0]
698
- if use_cache:
699
- presents.append(outputs[1])
700
-
701
- if output_attentions:
702
- all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
703
-
704
- hidden_states = self.ln_f(hidden_states)
705
- hidden_states = hidden_states.reshape(output_shape)
706
- # Add last hidden state
707
- if output_hidden_states:
708
- all_hidden_states = all_hidden_states + (hidden_states,)
709
-
710
-
711
- if not return_dict:
712
- return tuple(
713
- v
714
- for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
715
- if v is not None
716
- )
717
-
718
- return BaseModelOutputWithPastAndCrossAttentions(
719
- last_hidden_state=hidden_states,
720
- past_key_values=presents,
721
- hidden_states=all_hidden_states,
722
- attentions=all_self_attentions,
723
- )
724
-
725
-
726
- @add_start_docstrings(
727
- """
728
- The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input
729
- embeddings).
730
- """,
731
- GPT_BIGCODE_START_DOCSTRING,
732
- )
733
- class ShellForCausalLM(ShellPreTrainedModel):
734
- _tied_weights_keys = ["lm_head.weight"]
735
-
736
- def __init__(self, config):
737
- super().__init__(config)
738
- self.transformer = ShellModel(config)
739
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
740
-
741
- # Initialize weights and apply final processing
742
- self.post_init()
743
-
744
- def get_output_embeddings(self):
745
- return self.lm_head
746
-
747
- def set_output_embeddings(self, new_embeddings):
748
- self.lm_head = new_embeddings
749
-
750
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
751
- token_type_ids = kwargs.get("token_type_ids", None)
752
- # only last token for inputs_ids if past is defined in kwargs
753
- if past_key_values:
754
- input_ids = input_ids[:, -1].unsqueeze(-1)
755
- if token_type_ids is not None:
756
- token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
757
-
758
- attention_mask = kwargs.get("attention_mask", None)
759
- position_ids = kwargs.get("position_ids", None)
760
-
761
- if attention_mask is not None and position_ids is None:
762
- # create position_ids on the fly for batch generation
763
- position_ids = attention_mask.long().cumsum(-1) - 1
764
- position_ids.masked_fill_(attention_mask == 0, 1)
765
- if past_key_values:
766
- position_ids = position_ids[:, -1].unsqueeze(-1)
767
- else:
768
- position_ids = None
769
-
770
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
771
- if inputs_embeds is not None and past_key_values is None:
772
- model_inputs = {"inputs_embeds": inputs_embeds}
773
- else:
774
- model_inputs = {"input_ids": input_ids}
775
-
776
- model_inputs.update(
777
- {
778
- "past_key_values": past_key_values,
779
- "use_cache": kwargs.get("use_cache"),
780
- "position_ids": position_ids,
781
- "attention_mask": attention_mask,
782
- "token_type_ids": token_type_ids,
783
- }
784
- )
785
- return model_inputs
786
-
787
- @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
788
- def forward(
789
- self,
790
- input_ids: Optional[torch.Tensor] = None,
791
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
792
- attention_mask: Optional[torch.Tensor] = None,
793
- token_type_ids: Optional[torch.Tensor] = None,
794
- position_ids: Optional[torch.Tensor] = None,
795
- head_mask: Optional[torch.Tensor] = None,
796
- inputs_embeds: Optional[torch.Tensor] = None,
797
- encoder_hidden_states: Optional[torch.Tensor] = None,
798
- encoder_attention_mask: Optional[torch.Tensor] = None,
799
- labels: Optional[torch.Tensor] = None,
800
- use_cache: Optional[bool] = None,
801
- output_attentions: Optional[bool] = None,
802
- output_hidden_states: Optional[bool] = None,
803
- return_dict: Optional[bool] = None,
804
- ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
805
- r"""
806
- labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
807
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
808
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
809
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
810
- """
811
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
812
-
813
- transformer_outputs = self.transformer(
814
- input_ids,
815
- past_key_values=past_key_values,
816
- attention_mask=attention_mask,
817
- token_type_ids=token_type_ids,
818
- position_ids=position_ids,
819
- head_mask=head_mask,
820
- inputs_embeds=inputs_embeds,
821
- encoder_hidden_states=encoder_hidden_states,
822
- encoder_attention_mask=encoder_attention_mask,
823
- use_cache=use_cache,
824
- output_attentions=output_attentions,
825
- output_hidden_states=output_hidden_states,
826
- return_dict=return_dict,
827
- )
828
- hidden_states = transformer_outputs[0]
829
- lm_logits = self.lm_head(hidden_states)
830
- loss = None
831
- if labels is not None:
832
- # Shift so that tokens < n predict n
833
- shift_logits = lm_logits[..., :-1, :].contiguous()
834
- shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
835
- # Flatten the tokens
836
- loss_fct = CrossEntropyLoss()
837
- loss = loss_fct(shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.reshape(-1))
838
-
839
- if not return_dict:
840
- output = (lm_logits,) + transformer_outputs[1:]
841
- return ((loss,) + output) if loss is not None else output
842
-
843
- return CausalLMOutputWithCrossAttentions(
844
- loss=loss,
845
- logits=lm_logits,
846
- past_key_values=transformer_outputs.past_key_values,
847
- hidden_states=transformer_outputs.hidden_states,
848
- attentions=transformer_outputs.attentions,
849
- )
850
-
851
- @staticmethod
852
- def _reorder_cache(past_key_values, beam_idx):
853
- reordered_past = ()
854
- for layer_past in past_key_values:
855
- reordered_past += (
856
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
857
- )
858
- return reordered_past