Delete modeling_kclgpt.py
Browse files- modeling_kclgpt.py +0 -939
modeling_kclgpt.py
DELETED
@@ -1,939 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2023 The Bigcode team and HuggingFace Inc. team.
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""PyTorch KCLGPT model."""
|
15 |
-
import math
|
16 |
-
from typing import List, Optional, Tuple, Union
|
17 |
-
|
18 |
-
import torch
|
19 |
-
import torch.utils.checkpoint
|
20 |
-
from torch import nn
|
21 |
-
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
22 |
-
|
23 |
-
from transformers.activations import ACT2FN
|
24 |
-
from transformers.modeling_outputs import (
|
25 |
-
BaseModelOutputWithPastAndCrossAttentions,
|
26 |
-
CausalLMOutputWithCrossAttentions,
|
27 |
-
)
|
28 |
-
from transformers.modeling_utils import PreTrainedModel
|
29 |
-
from transformers.utils import (
|
30 |
-
add_start_docstrings,
|
31 |
-
add_start_docstrings_to_model_forward,
|
32 |
-
logging,
|
33 |
-
)
|
34 |
-
from .configuration_kclgpt import KCLGPTConfig
|
35 |
-
|
36 |
-
|
37 |
-
logger = logging.get_logger(__name__)
|
38 |
-
|
39 |
-
# Fused kernels
|
40 |
-
# Use separate functions for each case because conditionals prevent kernel fusion.
|
41 |
-
# TODO: Could have better fused kernels depending on scaling, dropout and head mask.
|
42 |
-
# Is it doable without writing 32 functions?
|
43 |
-
@torch.jit.script
|
44 |
-
def upcast_masked_softmax(
|
45 |
-
x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
|
46 |
-
):
|
47 |
-
input_dtype = x.dtype
|
48 |
-
x = x.to(softmax_dtype) * scale
|
49 |
-
x = torch.where(mask, x, mask_value)
|
50 |
-
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
|
51 |
-
return x
|
52 |
-
|
53 |
-
|
54 |
-
@torch.jit.script
|
55 |
-
def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
|
56 |
-
input_dtype = x.dtype
|
57 |
-
x = x.to(softmax_dtype) * scale
|
58 |
-
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
|
59 |
-
return x
|
60 |
-
|
61 |
-
|
62 |
-
@torch.jit.script
|
63 |
-
def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
|
64 |
-
x = torch.where(mask, x, mask_value)
|
65 |
-
x = torch.nn.functional.softmax(x, dim=-1)
|
66 |
-
return x
|
67 |
-
|
68 |
-
|
69 |
-
class LlamaRotaryEmbedding(torch.nn.Module):
|
70 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
71 |
-
super().__init__()
|
72 |
-
|
73 |
-
self.dim = dim
|
74 |
-
self.max_position_embeddings = max_position_embeddings
|
75 |
-
self.base = base
|
76 |
-
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
77 |
-
self.register_buffer("inv_freq", inv_freq)
|
78 |
-
|
79 |
-
# Build here to make `torch.jit.trace` work.
|
80 |
-
self._set_cos_sin_cache(
|
81 |
-
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
82 |
-
)
|
83 |
-
|
84 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
85 |
-
self.max_seq_len_cached = seq_len
|
86 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
87 |
-
|
88 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
89 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
90 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
91 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
92 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
93 |
-
|
94 |
-
def forward(self, x, seq_len=None):
|
95 |
-
# x: [bs, num_attention_heads, seq_len, head_size]
|
96 |
-
if seq_len > self.max_seq_len_cached:
|
97 |
-
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
98 |
-
|
99 |
-
return (
|
100 |
-
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
101 |
-
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
102 |
-
)
|
103 |
-
|
104 |
-
|
105 |
-
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
106 |
-
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
107 |
-
|
108 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
109 |
-
self.scaling_factor = scaling_factor
|
110 |
-
super().__init__(dim, max_position_embeddings, base, device)
|
111 |
-
|
112 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
113 |
-
self.max_seq_len_cached = seq_len
|
114 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
115 |
-
t = t / self.scaling_factor
|
116 |
-
|
117 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
118 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
119 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
120 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
121 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
122 |
-
|
123 |
-
|
124 |
-
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
125 |
-
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
126 |
-
|
127 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
128 |
-
self.scaling_factor = scaling_factor
|
129 |
-
super().__init__(dim, max_position_embeddings, base, device)
|
130 |
-
|
131 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
132 |
-
self.max_seq_len_cached = seq_len
|
133 |
-
|
134 |
-
if seq_len > self.max_position_embeddings:
|
135 |
-
base = self.base * (
|
136 |
-
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
137 |
-
) ** (self.dim / (self.dim - 2))
|
138 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
139 |
-
self.register_buffer("inv_freq", inv_freq)
|
140 |
-
|
141 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
142 |
-
|
143 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
144 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
145 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
146 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
147 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
148 |
-
|
149 |
-
def rotate_half(x):
|
150 |
-
"""Rotates half the hidden dims of the input."""
|
151 |
-
x1 = x[..., : x.shape[-1] // 2]
|
152 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
153 |
-
return torch.cat((-x2, x1), dim=-1)
|
154 |
-
|
155 |
-
|
156 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
157 |
-
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
158 |
-
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
159 |
-
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
160 |
-
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
161 |
-
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
162 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
163 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
164 |
-
return q_embed, k_embed
|
165 |
-
|
166 |
-
|
167 |
-
class KCLGPTAttention(nn.Module):
|
168 |
-
def __init__(self, config, layer_idx=None):
|
169 |
-
super().__init__()
|
170 |
-
self.mask_value = None
|
171 |
-
|
172 |
-
self.position_embedding_type = config.position_embedding_type
|
173 |
-
self.rope_scaling = config.rope_scaling
|
174 |
-
self.max_position_embeddings = config.max_position_embeddings
|
175 |
-
|
176 |
-
self.group_query_attention = config.group_query_attention
|
177 |
-
self.num_query_groups = config.num_query_groups
|
178 |
-
|
179 |
-
self.embed_dim = config.hidden_size
|
180 |
-
self.num_heads = config.num_attention_heads
|
181 |
-
self.head_dim = self.embed_dim // self.num_heads
|
182 |
-
self.kv_heads = config.num_query_groups if self.group_query_attention else self.num_heads
|
183 |
-
self.kv_dim = self.kv_heads * self.head_dim
|
184 |
-
self.split_size = self.embed_dim
|
185 |
-
if self.head_dim * self.num_heads != self.embed_dim:
|
186 |
-
raise ValueError(
|
187 |
-
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
188 |
-
f" {self.num_heads})."
|
189 |
-
)
|
190 |
-
|
191 |
-
self.scale_attn_weights = config.scale_attn_weights
|
192 |
-
|
193 |
-
self.layer_idx = layer_idx
|
194 |
-
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
195 |
-
self.scale_attention_softmax_in_fp32 = (
|
196 |
-
config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
|
197 |
-
)
|
198 |
-
|
199 |
-
self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)
|
200 |
-
|
201 |
-
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
202 |
-
|
203 |
-
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
204 |
-
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
205 |
-
|
206 |
-
if self.position_embedding_type == "rope":
|
207 |
-
self._init_rope()
|
208 |
-
|
209 |
-
def _init_rope(self):
|
210 |
-
if self.rope_scaling is None:
|
211 |
-
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
212 |
-
else:
|
213 |
-
scaling_type = self.rope_scaling["type"]
|
214 |
-
scaling_factor = self.rope_scaling["factor"]
|
215 |
-
if scaling_type == "linear":
|
216 |
-
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
217 |
-
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
218 |
-
)
|
219 |
-
elif scaling_type == "dynamic":
|
220 |
-
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
221 |
-
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
222 |
-
)
|
223 |
-
else:
|
224 |
-
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
225 |
-
|
226 |
-
|
227 |
-
def _get_mask_value(self, device, dtype):
|
228 |
-
# torch.where expects a tensor. We use a cache to avoid recreating it every time.
|
229 |
-
if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
|
230 |
-
self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
|
231 |
-
return self.mask_value
|
232 |
-
|
233 |
-
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
234 |
-
dtype = query.dtype
|
235 |
-
softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
|
236 |
-
upcast = dtype != softmax_dtype
|
237 |
-
|
238 |
-
unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
|
239 |
-
scale_factor = unscale**-1
|
240 |
-
if self.scale_attn_weights:
|
241 |
-
scale_factor /= self.head_dim**0.5
|
242 |
-
|
243 |
-
# [b, np, sq, sk]
|
244 |
-
output_size = (query.size(1),
|
245 |
-
query.size(2),
|
246 |
-
query.size(0),
|
247 |
-
key.size(0))
|
248 |
-
attn_view = (output_size[0]*output_size[1], output_size[2], output_size[3])
|
249 |
-
|
250 |
-
# [sq, b, np, hn] -> [sq, b * np, hn]
|
251 |
-
query = query.reshape(output_size[2],
|
252 |
-
output_size[0] * output_size[1], -1)
|
253 |
-
# [sk, b, np, hn] -> [sk, b * np, hn]
|
254 |
-
key = key.reshape(output_size[3],
|
255 |
-
output_size[0] * output_size[1], -1)
|
256 |
-
attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype)
|
257 |
-
if query.device.type == "cpu":
|
258 |
-
# This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588.
|
259 |
-
# The bug was fixed in https://github.com/pytorch/pytorch/pull/96086,
|
260 |
-
# but the fix has not been released as of pytorch version 2.0.0.
|
261 |
-
attn_weights = torch.zeros_like(attn_weights)
|
262 |
-
beta = 1
|
263 |
-
else:
|
264 |
-
beta = 0
|
265 |
-
|
266 |
-
attn_weights = torch.baddbmm(attn_weights,
|
267 |
-
query.transpose(0, 1),
|
268 |
-
key.transpose(0, 1).transpose(1, 2),
|
269 |
-
beta=beta, alpha=scale_factor).reshape(output_size)
|
270 |
-
|
271 |
-
if upcast:
|
272 |
-
# Use a fused kernel to prevent a large overhead from casting and scaling.
|
273 |
-
# Sub-optimal when the key length is not a multiple of 8.
|
274 |
-
if attention_mask is None:
|
275 |
-
attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
|
276 |
-
else:
|
277 |
-
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
|
278 |
-
attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
|
279 |
-
else:
|
280 |
-
if attention_mask is not None:
|
281 |
-
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
|
282 |
-
|
283 |
-
# The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
|
284 |
-
attn_weights = torch.where(attention_mask, attn_weights, mask_value)
|
285 |
-
|
286 |
-
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
287 |
-
|
288 |
-
attn_weights = self.attn_dropout(attn_weights)
|
289 |
-
|
290 |
-
attn_weights = attn_weights.reshape(attn_view)
|
291 |
-
|
292 |
-
# value_layer -> context layer.
|
293 |
-
# [sk, b, np, hn] --> [b, np, sq, hn]
|
294 |
-
|
295 |
-
# context layer shape: [b, np, sq, hn]
|
296 |
-
output_size = (value.size(1),
|
297 |
-
value.size(2),
|
298 |
-
query.size(0),
|
299 |
-
value.size(3))
|
300 |
-
|
301 |
-
# change view [sk, b * np, hn]
|
302 |
-
value = value.reshape(value.size(0),
|
303 |
-
output_size[0] * output_size[1], -1)
|
304 |
-
attn_output = torch.bmm(attn_weights, value.transpose(0, 1))
|
305 |
-
|
306 |
-
# change view [b, np, sq, hn]
|
307 |
-
attn_output = attn_output.reshape(*output_size)
|
308 |
-
# [b, np, sq, hn] --> [sq, b, np, hn]
|
309 |
-
attn_output = attn_output.permute(2, 0, 1, 3).contiguous()
|
310 |
-
|
311 |
-
# [sq, b, np, hn] --> [sq, b, hp]
|
312 |
-
attn_output = attn_output.reshape(attn_output.size(0), attn_output.size(1), -1)
|
313 |
-
|
314 |
-
return attn_output, attn_weights
|
315 |
-
|
316 |
-
def forward(
|
317 |
-
self,
|
318 |
-
hidden_states: torch.Tensor,
|
319 |
-
layer_past: Optional[torch.Tensor] = None,
|
320 |
-
attention_mask: Optional[torch.Tensor] = None,
|
321 |
-
position_ids: Optional[torch.LongTensor] = None,
|
322 |
-
head_mask: Optional[torch.Tensor] = None,
|
323 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
324 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
325 |
-
use_cache: Optional[bool] = False,
|
326 |
-
output_attentions: Optional[bool] = False,
|
327 |
-
) -> Union[
|
328 |
-
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
329 |
-
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
|
330 |
-
]:
|
331 |
-
if self.group_query_attention:
|
332 |
-
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
|
333 |
-
else:
|
334 |
-
# Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
|
335 |
-
# i.e., the memory layout is not the same as GPT2.
|
336 |
-
# This makes the concatenation with past_key_value more efficient.
|
337 |
-
query, key_value = (
|
338 |
-
self.c_attn(hidden_states)
|
339 |
-
.reshape(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
|
340 |
-
.transpose(1, 2)
|
341 |
-
.split((self.head_dim, 2 * self.head_dim), dim=3)
|
342 |
-
)
|
343 |
-
|
344 |
-
query = query.reshape(query.size(0), query.size(1), -1, self.head_dim)
|
345 |
-
|
346 |
-
key, value = key_value.split((self.head_dim*self.num_query_groups, self.head_dim*self.num_query_groups), dim=-1)
|
347 |
-
# expand the key_layer and value_layer [sk, b, ng, hn] -> [sk, b, np, hn]
|
348 |
-
key = key.reshape(key.size(0), key.size(1), -1, self.head_dim)
|
349 |
-
value = value.reshape(value.size(0), value.size(1), -1, self.head_dim)
|
350 |
-
|
351 |
-
key = key.repeat_interleave(
|
352 |
-
self.num_heads // self.num_query_groups,
|
353 |
-
dim = 2
|
354 |
-
)
|
355 |
-
value = value.repeat_interleave(
|
356 |
-
self.num_heads // self.num_query_groups,
|
357 |
-
dim = 2
|
358 |
-
)
|
359 |
-
|
360 |
-
if self.position_embedding_type == "rope":
|
361 |
-
kv_seq_len = key.shape[-3]
|
362 |
-
if layer_past is not None:
|
363 |
-
kv_seq_len += layer_past[0].shape[-3]
|
364 |
-
|
365 |
-
cos, sin = self.rotary_emb(value, seq_len=kv_seq_len)
|
366 |
-
query = query.transpose(1, 2).contiguous()
|
367 |
-
key = key.transpose(1, 2).contiguous()
|
368 |
-
query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids)
|
369 |
-
query = query.transpose(1, 2).contiguous()
|
370 |
-
key = key.transpose(1, 2).contiguous()
|
371 |
-
|
372 |
-
if layer_past is not None:
|
373 |
-
key = torch.cat((layer_past[0], key), dim=-3)
|
374 |
-
value = torch.cat((layer_past[1], value), dim=-3)
|
375 |
-
present = (key, value) if use_cache else None
|
376 |
-
|
377 |
-
attn_output, attn_weights = self._attn(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1), attention_mask, head_mask)
|
378 |
-
|
379 |
-
attn_output = attn_output.transpose(0, 1).reshape(hidden_states.shape)
|
380 |
-
attn_output = self.c_proj(attn_output)
|
381 |
-
attn_output = self.resid_dropout(attn_output)
|
382 |
-
|
383 |
-
outputs = (attn_output, present)
|
384 |
-
if output_attentions:
|
385 |
-
if self.group_query_attention:
|
386 |
-
# Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
|
387 |
-
attn_weights = attn_weights.transpose(1, 2)
|
388 |
-
outputs += (attn_weights,)
|
389 |
-
|
390 |
-
return outputs # a, present, (attentions)
|
391 |
-
|
392 |
-
|
393 |
-
class KCLGPTMLP(nn.Module):
|
394 |
-
def __init__(self, intermediate_size, config):
|
395 |
-
super().__init__()
|
396 |
-
embed_dim = config.hidden_size
|
397 |
-
self.c_fc = nn.Linear(embed_dim, intermediate_size)
|
398 |
-
self.c_proj = nn.Linear(intermediate_size, embed_dim)
|
399 |
-
self.act = ACT2FN[config.activation_function]
|
400 |
-
self.dropout = nn.Dropout(config.resid_pdrop)
|
401 |
-
|
402 |
-
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
|
403 |
-
def forward(self, hidden_states: Optional[Tuple[torch.Tensor]]) -> torch.Tensor:
|
404 |
-
hidden_states = self.c_fc(hidden_states)
|
405 |
-
hidden_states = self.act(hidden_states)
|
406 |
-
hidden_states = self.c_proj(hidden_states)
|
407 |
-
hidden_states = self.dropout(hidden_states)
|
408 |
-
return hidden_states
|
409 |
-
|
410 |
-
|
411 |
-
class KCLGPTBlock(nn.Module):
|
412 |
-
def __init__(self, config, layer_idx=None):
|
413 |
-
super().__init__()
|
414 |
-
hidden_size = config.hidden_size
|
415 |
-
self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
416 |
-
|
417 |
-
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
418 |
-
self.attn = KCLGPTAttention(config, layer_idx=layer_idx)
|
419 |
-
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
420 |
-
|
421 |
-
self.mlp = KCLGPTMLP(self.inner_dim, config)
|
422 |
-
|
423 |
-
def forward(
|
424 |
-
self,
|
425 |
-
hidden_states: Optional[Tuple[torch.Tensor]],
|
426 |
-
layer_past: Optional[torch.Tensor] = None,
|
427 |
-
attention_mask: Optional[torch.Tensor] = None,
|
428 |
-
position_ids: Optional[torch.LongTensor] = None,
|
429 |
-
head_mask: Optional[torch.Tensor] = None,
|
430 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
431 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
432 |
-
use_cache: Optional[bool] = False,
|
433 |
-
output_attentions: Optional[bool] = False,
|
434 |
-
) -> Union[
|
435 |
-
Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
|
436 |
-
]:
|
437 |
-
residual = hidden_states
|
438 |
-
hidden_states = self.ln_1(hidden_states)
|
439 |
-
attn_outputs = self.attn(
|
440 |
-
hidden_states,
|
441 |
-
layer_past=layer_past,
|
442 |
-
attention_mask=attention_mask,
|
443 |
-
position_ids=position_ids,
|
444 |
-
head_mask=head_mask,
|
445 |
-
use_cache=use_cache,
|
446 |
-
output_attentions=output_attentions,
|
447 |
-
)
|
448 |
-
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
449 |
-
|
450 |
-
outputs = attn_outputs[1:]
|
451 |
-
# residual connection
|
452 |
-
hidden_states = attn_output + residual
|
453 |
-
|
454 |
-
residual = hidden_states
|
455 |
-
hidden_states = self.ln_2(hidden_states)
|
456 |
-
feed_forward_hidden_states = self.mlp(hidden_states)
|
457 |
-
# residual connection
|
458 |
-
hidden_states = residual + feed_forward_hidden_states
|
459 |
-
|
460 |
-
if use_cache:
|
461 |
-
outputs = (hidden_states,) + outputs
|
462 |
-
else:
|
463 |
-
outputs = (hidden_states,) + outputs[1:]
|
464 |
-
|
465 |
-
return outputs # hidden_states, present, (attentions, cross_attentions)
|
466 |
-
|
467 |
-
|
468 |
-
class KCLGPTPreTrainedModel(PreTrainedModel):
|
469 |
-
"""
|
470 |
-
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
471 |
-
models.
|
472 |
-
"""
|
473 |
-
|
474 |
-
config_class = KCLGPTConfig
|
475 |
-
base_model_prefix = "transformer"
|
476 |
-
supports_gradient_checkpointing = True
|
477 |
-
_no_split_modules = ["KCLGPTBlock"]
|
478 |
-
_skip_keys_device_placement = "past_key_values"
|
479 |
-
|
480 |
-
def __init__(self, *inputs, **kwargs):
|
481 |
-
super().__init__(*inputs, **kwargs)
|
482 |
-
|
483 |
-
def _init_weights(self, module):
|
484 |
-
"""Initialize the weights."""
|
485 |
-
if isinstance(module, (KCLGPTMLP, KCLGPTAttention)):
|
486 |
-
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
487 |
-
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
488 |
-
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
489 |
-
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
490 |
-
#
|
491 |
-
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
492 |
-
module.c_proj.weight.data.normal_(
|
493 |
-
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
|
494 |
-
)
|
495 |
-
module.c_proj._is_hf_initialized = True
|
496 |
-
elif isinstance(module, nn.Linear):
|
497 |
-
# Slightly different from the TF version which uses truncated_normal for initialization
|
498 |
-
# cf https://github.com/pytorch/pytorch/pull/5617
|
499 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
500 |
-
if module.bias is not None:
|
501 |
-
module.bias.data.zero_()
|
502 |
-
elif isinstance(module, nn.Embedding):
|
503 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
504 |
-
if module.padding_idx is not None:
|
505 |
-
module.weight.data[module.padding_idx].zero_()
|
506 |
-
elif isinstance(module, nn.LayerNorm):
|
507 |
-
module.bias.data.zero_()
|
508 |
-
module.weight.data.fill_(1.0)
|
509 |
-
|
510 |
-
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2PreTrainedModel._set_gradient_checkpointing with GPT2->KCLGPT
|
511 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
512 |
-
if isinstance(module, KCLGPTModel):
|
513 |
-
module.gradient_checkpointing = value
|
514 |
-
|
515 |
-
|
516 |
-
GPT_BIGCODE_START_DOCSTRING = r"""
|
517 |
-
|
518 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
519 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
520 |
-
etc.)
|
521 |
-
|
522 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
523 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
524 |
-
and behavior.
|
525 |
-
|
526 |
-
Parameters:
|
527 |
-
config ([`KCLGPTConfig`]): Model configuration class with all the parameters of the model.
|
528 |
-
Initializing with a config file does not load the weights associated with the model, only the
|
529 |
-
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
530 |
-
"""
|
531 |
-
|
532 |
-
GPT_BIGCODE_INPUTS_DOCSTRING = r"""
|
533 |
-
Args:
|
534 |
-
input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`):
|
535 |
-
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
536 |
-
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
537 |
-
sequence tokens in the vocabulary.
|
538 |
-
|
539 |
-
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
540 |
-
`input_ids`.
|
541 |
-
|
542 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
543 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
544 |
-
|
545 |
-
[What are input IDs?](../glossary#input-ids)
|
546 |
-
past_key_values (`Tuple[torch.Tensor]` of length `config.n_layers`):
|
547 |
-
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
548 |
-
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
549 |
-
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
550 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
551 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
552 |
-
|
553 |
-
- 1 for tokens that are **not masked**,
|
554 |
-
- 0 for tokens that are **masked**.
|
555 |
-
|
556 |
-
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
557 |
-
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
558 |
-
`len(past_key_values) + len(input_ids)`
|
559 |
-
|
560 |
-
[What are attention masks?](../glossary#attention-mask)
|
561 |
-
token_type_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
562 |
-
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
563 |
-
1]`:
|
564 |
-
|
565 |
-
- 0 corresponds to a *sentence A* token,
|
566 |
-
- 1 corresponds to a *sentence B* token.
|
567 |
-
|
568 |
-
[What are token type IDs?](../glossary#token-type-ids)
|
569 |
-
position_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
570 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
571 |
-
config.max_position_embeddings - 1]`.
|
572 |
-
|
573 |
-
[What are position IDs?](../glossary#position-ids)
|
574 |
-
head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
575 |
-
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
576 |
-
|
577 |
-
- 1 indicates the head is **not masked**,
|
578 |
-
- 0 indicates the head is **masked**.
|
579 |
-
|
580 |
-
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
581 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
582 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
583 |
-
model's internal embedding lookup matrix.
|
584 |
-
|
585 |
-
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
586 |
-
`past_key_values`).
|
587 |
-
use_cache (`bool`, *optional*):
|
588 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
589 |
-
`past_key_values`).
|
590 |
-
output_attentions (`bool`, *optional*):
|
591 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
592 |
-
tensors for more detail.
|
593 |
-
output_hidden_states (`bool`, *optional*):
|
594 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
595 |
-
more detail.
|
596 |
-
return_dict (`bool`, *optional*):
|
597 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
598 |
-
"""
|
599 |
-
|
600 |
-
|
601 |
-
@add_start_docstrings(
|
602 |
-
"The bare GPT_BIGCODE Model transformer outputting raw hidden-states without any specific head on top.",
|
603 |
-
GPT_BIGCODE_START_DOCSTRING,
|
604 |
-
)
|
605 |
-
class KCLGPTModel(KCLGPTPreTrainedModel):
|
606 |
-
def __init__(self, config):
|
607 |
-
super().__init__(config)
|
608 |
-
self.group_query_attention = config.group_query_attention
|
609 |
-
self.num_query_groups = config.num_query_groups
|
610 |
-
self.position_embedding_type = config.position_embedding_type
|
611 |
-
self.embed_dim = config.hidden_size
|
612 |
-
|
613 |
-
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
614 |
-
if self.position_embedding_type == "learned_absolute":
|
615 |
-
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
616 |
-
else:
|
617 |
-
pass
|
618 |
-
|
619 |
-
self.drop = nn.Dropout(config.embd_pdrop)
|
620 |
-
self.h = nn.ModuleList([KCLGPTBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
621 |
-
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
622 |
-
|
623 |
-
max_positions = config.max_position_embeddings
|
624 |
-
self.register_buffer(
|
625 |
-
"bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
|
626 |
-
)
|
627 |
-
|
628 |
-
self.gradient_checkpointing = False
|
629 |
-
|
630 |
-
# Initialize weights and apply final processing
|
631 |
-
self.post_init()
|
632 |
-
|
633 |
-
def get_input_embeddings(self):
|
634 |
-
return self.wte
|
635 |
-
|
636 |
-
def set_input_embeddings(self, new_embeddings):
|
637 |
-
self.wte = new_embeddings
|
638 |
-
|
639 |
-
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
|
640 |
-
def forward(
|
641 |
-
self,
|
642 |
-
input_ids: Optional[torch.Tensor] = None,
|
643 |
-
past_key_values: Optional[List[torch.Tensor]] = None,
|
644 |
-
attention_mask: Optional[torch.Tensor] = None,
|
645 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
646 |
-
position_ids: Optional[torch.Tensor] = None,
|
647 |
-
head_mask: Optional[torch.Tensor] = None,
|
648 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
649 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
650 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
651 |
-
use_cache: Optional[bool] = None,
|
652 |
-
output_attentions: Optional[bool] = None,
|
653 |
-
output_hidden_states: Optional[bool] = None,
|
654 |
-
return_dict: Optional[bool] = None,
|
655 |
-
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
656 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
657 |
-
output_hidden_states = (
|
658 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
659 |
-
)
|
660 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
661 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
662 |
-
|
663 |
-
if input_ids is not None and inputs_embeds is not None:
|
664 |
-
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
665 |
-
elif input_ids is not None:
|
666 |
-
input_shape = input_ids.size()
|
667 |
-
input_ids = input_ids.reshape(-1, input_shape[-1])
|
668 |
-
batch_size = input_ids.shape[0]
|
669 |
-
elif inputs_embeds is not None:
|
670 |
-
input_shape = inputs_embeds.size()[:-1]
|
671 |
-
batch_size = inputs_embeds.shape[0]
|
672 |
-
else:
|
673 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
674 |
-
|
675 |
-
if batch_size <= 0:
|
676 |
-
raise ValueError("batch_size has to be defined and > 0")
|
677 |
-
|
678 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
679 |
-
|
680 |
-
if token_type_ids is not None:
|
681 |
-
token_type_ids = token_type_ids.reshape(-1, input_shape[-1])
|
682 |
-
if position_ids is not None:
|
683 |
-
position_ids = position_ids.reshape(-1, input_shape[-1])
|
684 |
-
|
685 |
-
if past_key_values is None:
|
686 |
-
past_length = 0
|
687 |
-
past_key_values = tuple([None] * len(self.h))
|
688 |
-
else:
|
689 |
-
past_length = past_key_values[0][0].size(-3)
|
690 |
-
|
691 |
-
if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
|
692 |
-
# create position_ids on the fly for batch generation
|
693 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
694 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
695 |
-
if past_length > 0:
|
696 |
-
position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
|
697 |
-
elif position_ids is None:
|
698 |
-
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
699 |
-
position_ids = position_ids.unsqueeze(0).reshape(-1, input_shape[-1])
|
700 |
-
|
701 |
-
# Self-attention mask.
|
702 |
-
query_length = input_shape[-1]
|
703 |
-
key_length = past_length + query_length
|
704 |
-
self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
|
705 |
-
|
706 |
-
if attention_mask is not None:
|
707 |
-
self_attention_mask = self_attention_mask * attention_mask.reshape(batch_size, 1, -1).to(
|
708 |
-
dtype=torch.bool, device=self_attention_mask.device
|
709 |
-
)
|
710 |
-
|
711 |
-
# MQA models: (batch_size, query_length, n_heads, key_length)
|
712 |
-
# MHA models: (batch_size, n_heads, query_length, key_length)
|
713 |
-
attention_mask = self_attention_mask.unsqueeze(1)
|
714 |
-
|
715 |
-
encoder_attention_mask = None
|
716 |
-
|
717 |
-
# Prepare head mask if needed
|
718 |
-
# 1.0 in head_mask indicate we keep the head
|
719 |
-
# attention_probs has shape bsz x n_heads x N x N
|
720 |
-
# head_mask has shape n_layer x batch x n_heads x N x N
|
721 |
-
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
722 |
-
|
723 |
-
if inputs_embeds is None:
|
724 |
-
inputs_embeds = self.wte(input_ids)
|
725 |
-
|
726 |
-
hidden_states = inputs_embeds
|
727 |
-
if self.position_embedding_type == "learned_absolute":
|
728 |
-
position_embeds = self.wpe(position_ids)
|
729 |
-
hidden_states = hidden_states + position_embeds
|
730 |
-
|
731 |
-
if token_type_ids is not None:
|
732 |
-
token_type_embeds = self.wte(token_type_ids)
|
733 |
-
hidden_states = hidden_states + token_type_embeds
|
734 |
-
|
735 |
-
hidden_states = self.drop(hidden_states)
|
736 |
-
|
737 |
-
output_shape = input_shape + (hidden_states.size(-1),)
|
738 |
-
|
739 |
-
presents = [] if use_cache else None
|
740 |
-
all_self_attentions = () if output_attentions else None
|
741 |
-
all_hidden_states = () if output_hidden_states else None
|
742 |
-
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
743 |
-
if output_hidden_states:
|
744 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
745 |
-
|
746 |
-
if self.gradient_checkpointing and self.training:
|
747 |
-
|
748 |
-
def create_custom_forward(module):
|
749 |
-
def custom_forward(*inputs):
|
750 |
-
# None for past_key_value
|
751 |
-
return module(*inputs, use_cache, output_attentions)
|
752 |
-
|
753 |
-
return custom_forward
|
754 |
-
|
755 |
-
outputs = torch.utils.checkpoint.checkpoint(
|
756 |
-
create_custom_forward(block),
|
757 |
-
hidden_states,
|
758 |
-
None,
|
759 |
-
attention_mask,
|
760 |
-
position_ids,
|
761 |
-
head_mask[i],
|
762 |
-
encoder_hidden_states,
|
763 |
-
encoder_attention_mask,
|
764 |
-
)
|
765 |
-
else:
|
766 |
-
outputs = block(
|
767 |
-
hidden_states,
|
768 |
-
layer_past=layer_past,
|
769 |
-
attention_mask=attention_mask,
|
770 |
-
position_ids=position_ids,
|
771 |
-
head_mask=head_mask[i],
|
772 |
-
encoder_hidden_states=encoder_hidden_states,
|
773 |
-
encoder_attention_mask=encoder_attention_mask,
|
774 |
-
use_cache=use_cache,
|
775 |
-
output_attentions=output_attentions,
|
776 |
-
)
|
777 |
-
|
778 |
-
hidden_states = outputs[0]
|
779 |
-
if use_cache:
|
780 |
-
presents.append(outputs[1])
|
781 |
-
|
782 |
-
if output_attentions:
|
783 |
-
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
784 |
-
|
785 |
-
hidden_states = self.ln_f(hidden_states)
|
786 |
-
hidden_states = hidden_states.reshape(output_shape)
|
787 |
-
# Add last hidden state
|
788 |
-
if output_hidden_states:
|
789 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
790 |
-
|
791 |
-
|
792 |
-
if not return_dict:
|
793 |
-
return tuple(
|
794 |
-
v
|
795 |
-
for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
|
796 |
-
if v is not None
|
797 |
-
)
|
798 |
-
|
799 |
-
return BaseModelOutputWithPastAndCrossAttentions(
|
800 |
-
last_hidden_state=hidden_states,
|
801 |
-
past_key_values=presents,
|
802 |
-
hidden_states=all_hidden_states,
|
803 |
-
attentions=all_self_attentions,
|
804 |
-
)
|
805 |
-
|
806 |
-
|
807 |
-
@add_start_docstrings(
|
808 |
-
"""
|
809 |
-
The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
810 |
-
embeddings).
|
811 |
-
""",
|
812 |
-
GPT_BIGCODE_START_DOCSTRING,
|
813 |
-
)
|
814 |
-
class KCLGPTForCausalLM(KCLGPTPreTrainedModel):
|
815 |
-
_tied_weights_keys = ["lm_head.weight"]
|
816 |
-
|
817 |
-
def __init__(self, config):
|
818 |
-
super().__init__(config)
|
819 |
-
self.transformer = KCLGPTModel(config)
|
820 |
-
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
821 |
-
|
822 |
-
# Initialize weights and apply final processing
|
823 |
-
self.post_init()
|
824 |
-
|
825 |
-
def get_output_embeddings(self):
|
826 |
-
return self.lm_head
|
827 |
-
|
828 |
-
def set_output_embeddings(self, new_embeddings):
|
829 |
-
self.lm_head = new_embeddings
|
830 |
-
|
831 |
-
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
832 |
-
token_type_ids = kwargs.get("token_type_ids", None)
|
833 |
-
# only last token for inputs_ids if past is defined in kwargs
|
834 |
-
if past_key_values:
|
835 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
836 |
-
if token_type_ids is not None:
|
837 |
-
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
838 |
-
|
839 |
-
attention_mask = kwargs.get("attention_mask", None)
|
840 |
-
position_ids = kwargs.get("position_ids", None)
|
841 |
-
|
842 |
-
if attention_mask is not None and position_ids is None:
|
843 |
-
# create position_ids on the fly for batch generation
|
844 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
845 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
846 |
-
if past_key_values:
|
847 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
848 |
-
else:
|
849 |
-
position_ids = None
|
850 |
-
|
851 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
852 |
-
if inputs_embeds is not None and past_key_values is None:
|
853 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
854 |
-
else:
|
855 |
-
model_inputs = {"input_ids": input_ids}
|
856 |
-
|
857 |
-
model_inputs.update(
|
858 |
-
{
|
859 |
-
"past_key_values": past_key_values,
|
860 |
-
"use_cache": kwargs.get("use_cache"),
|
861 |
-
"position_ids": position_ids,
|
862 |
-
"attention_mask": attention_mask,
|
863 |
-
"token_type_ids": token_type_ids,
|
864 |
-
}
|
865 |
-
)
|
866 |
-
return model_inputs
|
867 |
-
|
868 |
-
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
|
869 |
-
def forward(
|
870 |
-
self,
|
871 |
-
input_ids: Optional[torch.Tensor] = None,
|
872 |
-
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
873 |
-
attention_mask: Optional[torch.Tensor] = None,
|
874 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
875 |
-
position_ids: Optional[torch.Tensor] = None,
|
876 |
-
head_mask: Optional[torch.Tensor] = None,
|
877 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
878 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
879 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
880 |
-
labels: Optional[torch.Tensor] = None,
|
881 |
-
use_cache: Optional[bool] = None,
|
882 |
-
output_attentions: Optional[bool] = None,
|
883 |
-
output_hidden_states: Optional[bool] = None,
|
884 |
-
return_dict: Optional[bool] = None,
|
885 |
-
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
886 |
-
r"""
|
887 |
-
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
888 |
-
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
889 |
-
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
890 |
-
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
891 |
-
"""
|
892 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
893 |
-
|
894 |
-
transformer_outputs = self.transformer(
|
895 |
-
input_ids,
|
896 |
-
past_key_values=past_key_values,
|
897 |
-
attention_mask=attention_mask,
|
898 |
-
token_type_ids=token_type_ids,
|
899 |
-
position_ids=position_ids,
|
900 |
-
head_mask=head_mask,
|
901 |
-
inputs_embeds=inputs_embeds,
|
902 |
-
encoder_hidden_states=encoder_hidden_states,
|
903 |
-
encoder_attention_mask=encoder_attention_mask,
|
904 |
-
use_cache=use_cache,
|
905 |
-
output_attentions=output_attentions,
|
906 |
-
output_hidden_states=output_hidden_states,
|
907 |
-
return_dict=return_dict,
|
908 |
-
)
|
909 |
-
hidden_states = transformer_outputs[0]
|
910 |
-
lm_logits = self.lm_head(hidden_states)
|
911 |
-
loss = None
|
912 |
-
if labels is not None:
|
913 |
-
# Shift so that tokens < n predict n
|
914 |
-
shift_logits = lm_logits[..., :-1, :].contiguous()
|
915 |
-
shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
|
916 |
-
# Flatten the tokens
|
917 |
-
loss_fct = CrossEntropyLoss()
|
918 |
-
loss = loss_fct(shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.reshape(-1))
|
919 |
-
|
920 |
-
if not return_dict:
|
921 |
-
output = (lm_logits,) + transformer_outputs[1:]
|
922 |
-
return ((loss,) + output) if loss is not None else output
|
923 |
-
|
924 |
-
return CausalLMOutputWithCrossAttentions(
|
925 |
-
loss=loss,
|
926 |
-
logits=lm_logits,
|
927 |
-
past_key_values=transformer_outputs.past_key_values,
|
928 |
-
hidden_states=transformer_outputs.hidden_states,
|
929 |
-
attentions=transformer_outputs.attentions,
|
930 |
-
)
|
931 |
-
|
932 |
-
@staticmethod
|
933 |
-
def _reorder_cache(past_key_values, beam_idx):
|
934 |
-
reordered_past = ()
|
935 |
-
for layer_past in past_key_values:
|
936 |
-
reordered_past += (
|
937 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
938 |
-
)
|
939 |
-
return reordered_past
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|