WizardLM's picture
Update README.md (#8)
5ac6748 verified
|
raw
history blame
10.3 kB
metadata
license: llama2
metrics:
  - code_eval
library_name: transformers
tags:
  - code
model-index:
  - name: WizardCoder-Python-13B-V1.0
    results:
      - task:
          type: text-generation
        dataset:
          type: openai_humaneval
          name: HumanEval
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.64
            verified: false

WizardCoder: Empowering Code Large Language Models with Evol-Instruct

🏠 Home Page

πŸ€— HF Repo β€’πŸ± Github Repo β€’ 🐦 Twitter

πŸ“ƒ [WizardLM] β€’ πŸ“ƒ [WizardCoder] β€’ πŸ“ƒ [WizardMath]

πŸ‘‹ Join our Discord

News

[2024/01/04] πŸ”₯ We released WizardCoder-33B-V1.1 trained from deepseek-coder-33b-base, the SOTA OSS Code LLM on EvalPlus Leaderboard, achieves 79.9 pass@1 on HumanEval, 73.2 pass@1 on HumanEval-Plus, 78.9 pass@1 on MBPP, and 66.9 pass@1 on MBPP-Plus.

[2024/01/04] πŸ”₯ WizardCoder-33B-V1.1 outperforms ChatGPT 3.5, Gemini Pro, and DeepSeek-Coder-33B-instruct on HumanEval and HumanEval-Plus pass@1.

[2024/01/04] πŸ”₯ WizardCoder-33B-V1.1 is comparable with ChatGPT 3.5, and surpasses Gemini Pro on MBPP and MBPP-Plus pass@1.

Model Checkpoint Paper HumanEval HumanEval+ MBPP MBPP+ License
GPT-4-Turbo (Nov 2023) - - 85.4 81.7 83.0 70.7 -
GPT-4 (May 2023) - - 88.4 76.8 - - -
GPT-3.5-Turbo (Nov 2023) - - 72.6 65.9 81.7 69.4 -
Gemini Pro - - 63.4 55.5 72.9 57.9 -
DeepSeek-Coder-33B-instruct - - 78.7 72.6 78.7 66.7 -
WizardCoder-33B-V1.1 πŸ€— HF Link πŸ“ƒ [WizardCoder] 79.9 73.2 78.9 66.9 MSFTResearch
WizardCoder-Python-34B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 73.2 64.6 73.2 59.9 Llama2
WizardCoder-15B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 59.8 52.4 -- -- OpenRAIL-M
WizardCoder-Python-13B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 64.0 -- -- -- Llama2
WizardCoder-Python-7B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 55.5 -- -- -- Llama2
WizardCoder-3B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 34.8 -- -- -- OpenRAIL-M
WizardCoder-1B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 23.8 -- -- -- OpenRAIL-M
  • Our WizardMath-70B-V1.0 model slightly outperforms some closed-source LLMs on the GSM8K, including ChatGPT 3.5, Claude Instant 1 and PaLM 2 540B.
  • Our WizardMath-70B-V1.0 model achieves 81.6 pass@1 on the GSM8k Benchmarks, which is 24.8 points higher than the SOTA open-source LLM, and achieves 22.7 pass@1 on the MATH Benchmarks, which is 9.2 points higher than the SOTA open-source LLM.
Model Checkpoint Paper GSM8k MATH Online Demo License
WizardMath-70B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardMath] 81.6 22.7 Demo Llama 2
WizardMath-13B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardMath] 63.9 14.0 Demo Llama 2
WizardMath-7B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardMath] 54.9 10.7 Demo Llama 2
Model Checkpoint Paper MT-Bench AlpacaEval GSM8k HumanEval License
WizardLM-70B-V1.0 πŸ€— HF Link πŸ“ƒComing Soon 7.78 92.91% 77.6% 50.6 Llama 2 License
WizardLM-13B-V1.2 πŸ€— HF Link 7.06 89.17% 55.3% 36.6 Llama 2 License
WizardLM-13B-V1.1 πŸ€— HF Link 6.76 86.32% 25.0 Non-commercial
WizardLM-30B-V1.0 πŸ€— HF Link 7.01 37.8 Non-commercial
WizardLM-13B-V1.0 πŸ€— HF Link 6.35 75.31% 24.0 Non-commercial
WizardLM-7B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardLM] 19.1 Non-commercial

Comparing WizardCoder-Python-34B-V1.0 with Other LLMs.

πŸ”₯ The following figure shows that our WizardCoder-Python-34B-V1.0 attains the second position in this benchmark, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2).

WizardCoder

Prompt Format

"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"

Inference Demo Script

We provide the inference demo code here.

Note: This script supports WizardLM/WizardCoder-Python-34B/13B/7B-V1.0. If you want to inference with WizardLM/WizardCoder-15B/3B/1B-V1.0, please change the stop_tokens = ['</s>'] to stop_tokens = ['<|endoftext|>'] in the script.

Citation

Please cite the repo if you use the data, method or code in this repo.

@article{luo2023wizardcoder,
  title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
  author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
  journal={arXiv preprint arXiv:2306.08568},
  year={2023}
}