Information

Pretrained Word2vec in Japanese. For more information, see https://wikipedia2vec.github.io/wikipedia2vec/pretrained/.

How to use?

from gensim.models import KeyedVectors
from huggingface_hub import hf_hub_download
model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/wikipedia2vec_jawiki_20180420_300d", filename="jawiki_20180420_300d.txt"))
model.most_similar("your_word")

Citation

@inproceedings{yamada2020wikipedia2vec,
  title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia",
  author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji},
  booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
  year = {2020},
  publisher = {Association for Computational Linguistics},
  pages = {23--30}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train Word2vec/wikipedia2vec_jawiki_20180420_300d