pruned-mt5-small / README.md
X-Wang's picture
Update README.md
89b7d23
---
base_model: X-Wang/pruned-mt5-small
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: pruned-mt5-small
results: []
datasets:
- Helsinki-NLP/tatoeba_mt
language:
- ja
- zh
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pruned-mt5-small
This model is a fine-tuned version of [X-Wang/pruned-mt5-small](https://huggingface.co/X-Wang/pruned-mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4431
- Bleu: 11.4084
- Gen Len: 16.1053
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 3.3446 | 0.07 | 2000 | 2.9103 | 10.3957 | 16.0567 |
| 2.8425 | 0.14 | 4000 | 2.8570 | 10.5695 | 16.1895 |
| 3.186 | 0.21 | 6000 | 2.8137 | 10.5958 | 16.1523 |
| 2.788 | 0.28 | 8000 | 2.7593 | 10.7553 | 16.0138 |
| 2.9075 | 0.35 | 10000 | 2.7266 | 10.9199 | 16.2016 |
| 3.0579 | 0.42 | 12000 | 2.7030 | 10.6 | 16.0496 |
| 2.3618 | 0.49 | 14000 | 2.6547 | 10.8026 | 16.0412 |
| 3.079 | 0.56 | 16000 | 2.6441 | 10.7945 | 16.1148 |
| 2.7597 | 0.63 | 18000 | 2.6244 | 10.5877 | 16.0507 |
| 2.8533 | 0.7 | 20000 | 2.6049 | 10.9986 | 16.1145 |
| 2.843 | 0.77 | 22000 | 2.5836 | 10.9173 | 16.0826 |
| 2.8268 | 0.84 | 24000 | 2.5685 | 10.8136 | 16.0516 |
| 2.7021 | 0.91 | 26000 | 2.5509 | 11.326 | 16.0554 |
| 3.338 | 0.98 | 28000 | 2.5289 | 11.1485 | 16.0333 |
| 2.7374 | 1.05 | 30000 | 2.5220 | 11.0166 | 16.0998 |
| 2.7996 | 1.12 | 32000 | 2.5077 | 11.1316 | 16.131 |
| 2.6897 | 1.19 | 34000 | 2.4994 | 11.0811 | 16.1139 |
| 2.4107 | 1.26 | 36000 | 2.4877 | 11.2641 | 16.142 |
| 2.7695 | 1.33 | 38000 | 2.4756 | 11.2135 | 16.0977 |
| 3.3271 | 1.41 | 40000 | 2.4658 | 11.3328 | 16.0953 |
| 2.2641 | 1.48 | 42000 | 2.4612 | 11.3065 | 16.0549 |
| 2.6594 | 1.55 | 44000 | 2.4556 | 11.2684 | 16.1371 |
| 2.7322 | 1.62 | 46000 | 2.4520 | 11.3739 | 16.1058 |
| 2.6824 | 1.69 | 48000 | 2.4462 | 11.3335 | 16.1043 |
| 2.3369 | 1.76 | 50000 | 2.4455 | 11.3851 | 16.1239 |
| 2.9537 | 1.83 | 52000 | 2.4430 | 11.4026 | 16.0858 |
| 2.3928 | 1.9 | 54000 | 2.4433 | 11.301 | 16.1129 |
| 2.4714 | 1.97 | 56000 | 2.4431 | 11.4084 | 16.1053 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.0
- Datasets 2.13.1
- Tokenizers 0.13.3