Important Links

🤖Github | 🤗ModelScope | 📖XiYan-SQL | 🌕析言GBI | 🌞Modelscope Space

Introduction

We are excited to open source the XiYanSQL-QwenCoder series model, dedicated to advancing the development of LLMs in the text-to-SQL domain. As of now, XiYanSQL-QwenCoder covers four mainstream model sizes: 3B, 7B, 14B, and 32B parameters, to meet the needs of different developers.

  • The XiYanSQL-QwenCoder model demonstrates strong performance in SQL generation, with the XiYanSQL-QwenCoder-32B achieving a 69.03% EX score on the BIRD TEST set, setting a new SOTA with a single fine-tuned model. Other models in the series also maintain a leading position at their respective sizes.
  • The XiYanSQL-QwenCoder model supports multiple SQL dialects, such as SQLite, PostgreSQL, and MySQL.
  • The XiYanSQL-QwenCoder model can be used directly for text-to-SQL tasks or serve as a better starting point for fine-tuning SQL models.

Model Downloads

Model Download Latest
XiYanSQL-QwenCoder-3B 💻HuggingFace 🤗Modelscope
XiYanSQL-QwenCoder-7B 💻HuggingFace 🤗Modelscope
XiYanSQL-QwenCoder-14B 💻HuggingFace 🤗Modelscope
XiYanSQL-QwenCoder-32B 💻HuggingFace 🤗Modelscope

Performance

The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider benchmarks in the Text-to-SQL domain.

Model name BIRD Dev@M-Schema BIRD Dev@DDL Spider Test@M-Schema Spider Test@DDL
Codellama-34b 33.05% - 67.74% -
Deepseek-coder-33b 47.52% 44.72% 72.39% -
TableGPT2 46.35% 47.07% 74.76% 77.28%
Codestral 22b 50.52% 47.00% 78.45% 75.47%
GLM-4-plus 54.37% - 79.40% -
Claude35_sonnet-1022 53.32% 50.46% 76.27% 73.04%
Deepseek(v2.5-1210) 55.74% 55.61% 82.08% 80.57%
Gemini-1.5-pro 61.34% 57.89% 85.11% 84.00%
GPT-4o-0806 58.47% 54.82% 82.89% 78.45%
XiYanSQL-QwenCoder-3B 54.11% 53.19% 82.69% 78.85%
XiYanSQL-QwenCoder-7B 59.78% 56.58% 84.86% 80.31%
XiYanSQL-QwenCoder-14B 63.10% 60.37% 85.76% 82.79%
XiYanSQL-QwenCoder-32B 67.01% 63.04% 88.39% 85.46%

Requirements

transformers >= 4.37.0

Quickstart

Here is a simple code snippet for quickly using XiYanSQL-QwenCoder model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our M-Schema format for the schema; other formats such as DDL are also acceptable, but they may affect performance. Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.


nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
【用户问题】
{question}

【数据库schema】
{db_schema}

【参考信息】
{evidence}

【用户问题】
{question}

```sql"""

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2412"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

tokenizer = AutoTokenizer.from_pretrained(model_name)

## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
message = [{'role': 'user', 'content': prompt}]

text = tokenizer.apply_chat_template(
    message,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=1024,
    temperature=0.1,
    top_p=0.8,
    do_sample=True,
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

Acknowledgments

If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!

Downloads last month
304
Safetensors
Model size
3.4B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for XGenerationLab/XiYanSQL-QwenCoder-3B-2502

Quantizations
1 model

Collection including XGenerationLab/XiYanSQL-QwenCoder-3B-2502