File size: 24,782 Bytes
63a9590 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
# -*- coding: utf-8 -*-
# @Time : 2024/7/26 上午11:19
# @Author : xiaoshun
# @Email : 3038523973@qq.com
# @File : dbnet.py
# @Software: PyCharm
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
# from models.Transformer.ViT import truncated_normal_
# Decoder细化卷积模块
class SBR(nn.Module):
def __init__(self, in_ch):
super(SBR, self).__init__()
self.conv1x3 = nn.Sequential(
nn.Conv2d(in_ch, in_ch, kernel_size=(1, 3), stride=1, padding=(0, 1)),
nn.BatchNorm2d(in_ch),
nn.ReLU(True)
)
self.conv3x1 = nn.Sequential(
nn.Conv2d(in_ch, in_ch, kernel_size=(3, 1), stride=1, padding=(1, 0)),
nn.BatchNorm2d(in_ch),
nn.ReLU(True)
)
def forward(self, x):
out = self.conv3x1(self.conv1x3(x)) # 先进行1x3的卷积,得到结果并将结果再进行3x1的卷积
return out + x
# 下采样卷积模块 stage 1,2,3
class c_stage123(nn.Module):
def __init__(self, in_chans, out_chans):
super().__init__()
self.stage123 = nn.Sequential(
nn.Conv2d(in_channels=in_chans, out_channels=out_chans, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_chans),
nn.ReLU(),
nn.Conv2d(in_channels=out_chans, out_channels=out_chans, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_chans),
nn.ReLU(),
)
self.conv1x1_123 = nn.Conv2d(in_channels=in_chans, out_channels=out_chans, kernel_size=1)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
def forward(self, x):
stage123 = self.stage123(x) # 3*3卷积,两倍下采样 3*224*224-->64*112*112
max = self.maxpool(x) # 最大值池化,两倍下采样 3*224*224-->3*112*112
max = self.conv1x1_123(max) # 1*1卷积 3*112*112-->64*112*112
stage123 = stage123 + max # 残差结构,广播机制
return stage123
# 下采样卷积模块 stage4,5
class c_stage45(nn.Module):
def __init__(self, in_chans, out_chans):
super().__init__()
self.stage45 = nn.Sequential(
nn.Conv2d(in_channels=in_chans, out_channels=out_chans, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_chans),
nn.ReLU(),
nn.Conv2d(in_channels=out_chans, out_channels=out_chans, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_chans),
nn.ReLU(),
nn.Conv2d(in_channels=out_chans, out_channels=out_chans, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_chans),
nn.ReLU(),
)
self.conv1x1_45 = nn.Conv2d(in_channels=in_chans, out_channels=out_chans, kernel_size=1)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
def forward(self, x):
stage45 = self.stage45(x) # 3*3卷积模块 2倍下采样
max = self.maxpool(x) # 最大值池化,两倍下采样
max = self.conv1x1_45(max) # 1*1卷积模块 调整通道数
stage45 = stage45 + max # 残差结构
return stage45
class Identity(nn.Module): # 恒等映射
def __init__(self):
super().__init__()
def forward(self, x):
return x
# 轻量卷积模块
class DepthwiseConv2d(nn.Module): # 用于自注意力机制
def __init__(self, in_chans, out_chans, kernel_size=1, stride=1, padding=0, dilation=1):
super().__init__()
# depthwise conv
self.depthwise = nn.Conv2d(
in_channels=in_chans,
out_channels=in_chans,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation, # 深层卷积的膨胀率
groups=in_chans # 指定分组卷积的组数
)
# batch norm
self.bn = nn.BatchNorm2d(num_features=in_chans)
# pointwise conv 逐点卷积
self.pointwise = nn.Conv2d(
in_channels=in_chans,
out_channels=out_chans,
kernel_size=1
)
def forward(self, x):
x = self.depthwise(x)
x = self.bn(x)
x = self.pointwise(x)
return x
# residual skip connection 残差跳跃连接
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, input, **kwargs):
x = self.fn(input, **kwargs)
return (x + input)
# layer norm plus 层归一化
class PreNorm(nn.Module): # 代表神经网络层
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, input, **kwargs):
return self.fn(self.norm(input), **kwargs)
# FeedForward层使得representation的表达能力更强
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(in_features=dim, out_features=hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(in_features=hidden_dim, out_features=dim),
nn.Dropout(dropout)
)
def forward(self, input):
return self.net(input)
class ConvAttnetion(nn.Module):
'''
using the Depth_Separable_Wise Conv2d to produce the q, k, v instead of using Linear Project in ViT
'''
def __init__(self, dim, img_size, heads=8, dim_head=64, kernel_size=3, q_stride=1, k_stride=1, v_stride=1,
dropout=0., last_stage=False):
super().__init__()
self.last_stage = last_stage
self.img_size = img_size
inner_dim = dim_head * heads # 512
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** (-0.5)
pad = (kernel_size - q_stride) // 2
self.to_q = DepthwiseConv2d(in_chans=dim, out_chans=inner_dim, kernel_size=kernel_size, stride=q_stride,
padding=pad) # 自注意力机制
self.to_k = DepthwiseConv2d(in_chans=dim, out_chans=inner_dim, kernel_size=kernel_size, stride=k_stride,
padding=pad)
self.to_v = DepthwiseConv2d(in_chans=dim, out_chans=inner_dim, kernel_size=kernel_size, stride=v_stride,
padding=pad)
self.to_out = nn.Sequential(
nn.Linear(
in_features=inner_dim,
out_features=dim
),
nn.Dropout(dropout)
) if project_out else Identity()
def forward(self, x):
b, n, c, h = *x.shape, self.heads # * 星号的作用大概是去掉 tuple 属性吧
# print(x.shape)
# print('+++++++++++++++++++++++++++++++++')
# if语句内容没有使用
if self.last_stage:
cls_token = x[:, 0]
# print(cls_token.shape)
# print('+++++++++++++++++++++++++++++++++')
x = x[:, 1:] # 去掉每个数组的第一个元素
cls_token = rearrange(torch.unsqueeze(cls_token, dim=1), 'b n (h d) -> b h n d', h=h)
# rearrange:用于对张量的维度进行重新变换排序,可用于替换pytorch中的reshape,view,transpose和permute等操作
x = rearrange(x, 'b (l w) n -> b n l w', l=self.img_size, w=self.img_size) # [1, 3136, 64]-->1*64*56*56
# batch_size,N(通道数),h,w
q = self.to_q(x) # 1*64*56*56-->1*64*56*56
# print(q.shape)
# print('++++++++++++++')
q = rearrange(q, 'b (h d) l w -> b h (l w) d', h=h) # 1*64*56*56-->1*1*3136*64
# print(q.shape)
# print('=====================')
# batch_size,head,h*w,dim_head
k = self.to_k(x) # 操作和q一样
k = rearrange(k, 'b (h d) l w -> b h (l w) d', h=h)
# batch_size,head,h*w,dim_head
v = self.to_v(x) ##操作和q一样
# print(v.shape)
# print('[[[[[[[[[[[[[[[[[[[[[[[[[[[[')
v = rearrange(v, 'b (h d) l w -> b h (l w) d', h=h)
# print(v.shape)
# print(']]]]]]]]]]]]]]]]]]]]]]]]]]]')
# batch_size,head,h*w,dim_head
if self.last_stage:
# print(q.shape)
# print('================')
q = torch.cat([cls_token, q], dim=2)
# print(q.shape)
# print('++++++++++++++++++')
v = torch.cat([cls_token, v], dim=2)
k = torch.cat([cls_token, k], dim=2)
# calculate attention by matmul + scale
# permute:(batch_size,head,dim_head,h*w
# print(k.shape)
# print('++++++++++++++++++++')
k = k.permute(0, 1, 3, 2) # 1*1*3136*64-->1*1*64*3136
# print(k.shape)
# print('====================')
attention = (q.matmul(k)) # 1*1*3136*3136
# print(attention.shape)
# print('--------------------')
attention = attention * self.scale # 可以得到一个logit的向量,避免出现梯度下降和梯度爆炸
# print(attention.shape)
# print('####################')
# pass a softmax
attention = F.softmax(attention, dim=-1)
# print(attention.shape)
# print('********************')
# matmul v
# attention.matmul(v):(batch_size,head,h*w,dim_head)
# permute:(batch_size,h*w,head,dim_head)
out = (attention.matmul(v)).permute(0, 2, 1, 3).reshape(b, n,
c) # 1*3136*64 这些操作的目的是将注意力权重和值向量相乘后得到的结果进行重塑,得到一个形状为 (batch size, 序列长度, 值向量或矩阵的维度) 的张量
# linear project
out = self.to_out(out)
return out
# Reshape Layers
class Rearrange(nn.Module):
def __init__(self, string, h, w):
super().__init__()
self.string = string
self.h = h
self.w = w
def forward(self, input):
if self.string == 'b c h w -> b (h w) c':
N, C, H, W = input.shape
# print(input.shape)
x = torch.reshape(input, shape=(N, -1, self.h * self.w)).permute(0, 2, 1)
# print(x.shape)
# print('+++++++++++++++++++')
if self.string == 'b (h w) c -> b c h w':
N, _, C = input.shape
# print(input.shape)
x = torch.reshape(input, shape=(N, self.h, self.w, -1)).permute(0, 3, 1, 2)
# print(x.shape)
# print('=====================')
return x
# Transformer layers
class Transformer(nn.Module):
def __init__(self, dim, img_size, depth, heads, dim_head, mlp_dim, dropout=0., last_stage=False):
super().__init__()
self.layers = nn.ModuleList([ # 管理子模块,参数注册
nn.ModuleList([
PreNorm(dim=dim, fn=ConvAttnetion(dim, img_size, heads=heads, dim_head=dim_head, dropout=dropout,
last_stage=last_stage)), # 归一化,重参数化
PreNorm(dim=dim, fn=FeedForward(dim=dim, hidden_dim=mlp_dim, dropout=dropout))
]) for _ in range(depth)
])
def forward(self, x):
for attn, ff in self.layers:
x = x + attn(x)
x = x + ff(x)
return x
class DBNet(nn.Module): # 最主要的大函数
def __init__(self, img_size, in_channels, num_classes, dim=64, kernels=[7, 3, 3, 3], strides=[4, 2, 2, 2],
heads=[1, 3, 6, 6],
depth=[1, 2, 10, 10], pool='cls', dropout=0., emb_dropout=0., scale_dim=4, ):
super().__init__()
assert pool in ['cls', 'mean'], f'pool type must be either cls or mean pooling'
self.pool = pool
self.dim = dim
# stage1
# k:7 s:4 in: 1, 64, 56, 56 out: 1, 3136, 64
self.stage1_conv_embed = nn.Sequential(
nn.Conv2d( # 1*3*224*224-->[1, 64, 56, 56]
in_channels=in_channels,
out_channels=dim,
kernel_size=kernels[0],
stride=strides[0],
padding=2
),
Rearrange('b c h w -> b (h w) c', h=img_size // 4, w=img_size // 4), # [1, 64, 56, 56]-->[1, 3136, 64]
nn.LayerNorm(dim) # 对每个batch归一化
)
self.stage1_transformer = nn.Sequential(
Transformer( #
dim=dim,
img_size=img_size // 4,
depth=depth[0], # Transformer层中的编码器和解码器层数。
heads=heads[0],
dim_head=self.dim, # 它是每个注意力头的维度大小,通常是嵌入维度除以头数。
mlp_dim=dim * scale_dim, # mlp_dim:它是Transformer中前馈神经网络的隐藏层维度大小,通常是嵌入维度乘以一个缩放因子。
dropout=dropout,
# last_stage=last_stage #它是一个标志位,用于表示该Transformer层是否是最后一层。
),
Rearrange('b (h w) c -> b c h w', h=img_size // 4, w=img_size // 4)
)
# stage2
# k:3 s:2 in: 1, 192, 28, 28 out: 1, 784, 192
in_channels = dim
scale = heads[1] // heads[0]
dim = scale * dim
self.stage2_conv_embed = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=dim,
kernel_size=kernels[1],
stride=strides[1],
padding=1
),
Rearrange('b c h w -> b (h w) c', h=img_size // 8, w=img_size // 8),
nn.LayerNorm(dim)
)
self.stage2_transformer = nn.Sequential(
Transformer(
dim=dim,
img_size=img_size // 8,
depth=depth[1],
heads=heads[1],
dim_head=self.dim,
mlp_dim=dim * scale_dim,
dropout=dropout
),
Rearrange('b (h w) c -> b c h w', h=img_size // 8, w=img_size // 8)
)
# stage3
in_channels = dim
scale = heads[2] // heads[1]
dim = scale * dim
self.stage3_conv_embed = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=dim,
kernel_size=kernels[2],
stride=strides[2],
padding=1
),
Rearrange('b c h w -> b (h w) c', h=img_size // 16, w=img_size // 16),
nn.LayerNorm(dim)
)
self.stage3_transformer = nn.Sequential(
Transformer(
dim=dim,
img_size=img_size // 16,
depth=depth[2],
heads=heads[2],
dim_head=self.dim,
mlp_dim=dim * scale_dim,
dropout=dropout
),
Rearrange('b (h w) c -> b c h w', h=img_size // 16, w=img_size // 16)
)
# stage4
in_channels = dim
scale = heads[3] // heads[2]
dim = scale * dim
self.stage4_conv_embed = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=dim,
kernel_size=kernels[3],
stride=strides[3],
padding=1
),
Rearrange('b c h w -> b (h w) c', h=img_size // 32, w=img_size // 32),
nn.LayerNorm(dim)
)
self.stage4_transformer = nn.Sequential(
Transformer(
dim=dim, img_size=img_size // 32,
depth=depth[3],
heads=heads[3],
dim_head=self.dim,
mlp_dim=dim * scale_dim,
dropout=dropout,
),
Rearrange('b (h w) c -> b c h w', h=img_size // 32, w=img_size // 32)
)
### CNN Branch ###
self.c_stage1 = c_stage123(in_chans=3, out_chans=64)
self.c_stage2 = c_stage123(in_chans=64, out_chans=128)
self.c_stage3 = c_stage123(in_chans=128, out_chans=384)
self.c_stage4 = c_stage45(in_chans=384, out_chans=512)
self.c_stage5 = c_stage45(in_chans=512, out_chans=1024)
self.c_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.up_conv1 = nn.Conv2d(in_channels=192, out_channels=128, kernel_size=1)
self.up_conv2 = nn.Conv2d(in_channels=384, out_channels=512, kernel_size=1)
### CTmerge ###
self.CTmerge1 = nn.Sequential(
nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.CTmerge2 = nn.Sequential(
nn.Conv2d(in_channels=320, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
)
self.CTmerge3 = nn.Sequential(
nn.Conv2d(in_channels=768, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(in_channels=512, out_channels=384, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(384),
nn.ReLU(),
nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(384),
nn.ReLU(),
)
self.CTmerge4 = nn.Sequential(
nn.Conv2d(in_channels=896, out_channels=640, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(640),
nn.ReLU(),
nn.Conv2d(in_channels=640, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
)
# decoder
self.decoder4 = nn.Sequential(
DepthwiseConv2d(
in_chans=1408,
out_chans=1024,
kernel_size=3,
stride=1,
padding=1
),
DepthwiseConv2d(
in_chans=1024,
out_chans=512,
kernel_size=3,
stride=1,
padding=1
),
nn.GELU()
)
self.decoder3 = nn.Sequential(
DepthwiseConv2d(
in_chans=896,
out_chans=512,
kernel_size=3,
stride=1,
padding=1
),
DepthwiseConv2d(
in_chans=512,
out_chans=384,
kernel_size=3,
stride=1,
padding=1
),
nn.GELU()
)
self.decoder2 = nn.Sequential(
DepthwiseConv2d(
in_chans=576,
out_chans=256,
kernel_size=3,
stride=1,
padding=1
),
DepthwiseConv2d(
in_chans=256,
out_chans=192,
kernel_size=3,
stride=1,
padding=1
),
nn.GELU()
)
self.decoder1 = nn.Sequential(
DepthwiseConv2d(
in_chans=256,
out_chans=64,
kernel_size=3,
stride=1,
padding=1
),
DepthwiseConv2d(
in_chans=64,
out_chans=16,
kernel_size=3,
stride=1,
padding=1
),
nn.GELU()
)
self.sbr4 = SBR(512)
self.sbr3 = SBR(384)
self.sbr2 = SBR(192)
self.sbr1 = SBR(16)
self.head = nn.Conv2d(in_channels=16, out_channels=num_classes, kernel_size=1)
def forward(self, input):
### encoder ###
# stage1 = ts1 cat cs1
# t_s1 = self.t_stage1(input)
# print(input.shape)
# print('++++++++++++++++++++++')
t_s1 = self.stage1_conv_embed(input) # 1*3*224*224-->1*3136*64
# print(t_s1.shape)
# print('======================')
t_s1 = self.stage1_transformer(t_s1) # 1*3136*64-->1*64*56*56
# print(t_s1.shape)
# print('----------------------')
c_s1 = self.c_stage1(input) # 1*3*224*224-->1*64*112*112
# print(c_s1.shape)
# print('!!!!!!!!!!!!!!!!!!!!!!!')
stage1 = self.CTmerge1(torch.cat([t_s1, self.c_max(c_s1)], dim=1)) # 1*64*56*56 # 拼接两条分支
# print(stage1.shape)
# print('[[[[[[[[[[[[[[[[[[[[[[[')
# stage2 = ts2 up cs2
# t_s2 = self.t_stage2(stage1)
t_s2 = self.stage2_conv_embed(stage1) # 1*64*56*56-->1*784*192 # stage2_conv_embed是转化为序列操作
# print(t_s2.shape)
# print('[[[[[[[[[[[[[[[[[[[[[[[')
t_s2 = self.stage2_transformer(t_s2) # 1*784*192-->1*192*28*28
# print(t_s2.shape)
# print('+++++++++++++++++++++++++')
c_s2 = self.c_stage2(c_s1) # 1*64*112*112-->1*128*56*56
stage2 = self.CTmerge2(
torch.cat([c_s2, F.interpolate(t_s2, size=c_s2.size()[2:], mode='bilinear', align_corners=True)],
dim=1)) # mode='bilinear'表示使用双线性插值 1*128*56*56
# stage3 = ts3 cat cs3
# t_s3 = self.t_stage3(t_s2)
t_s3 = self.stage3_conv_embed(t_s2) # 1*192*28*28-->1*196*384
# print(t_s3.shape)
# print('///////////////////////')
t_s3 = self.stage3_transformer(t_s3) # 1*196*384-->1*384*14*14
# print(t_s3.shape)
# print('....................')
c_s3 = self.c_stage3(stage2) # 1*128*56*56-->1*384*28*28
stage3 = self.CTmerge3(torch.cat([t_s3, self.c_max(c_s3)], dim=1)) # 1*384*14*14
# stage4 = ts4 up cs4
# t_s4 = self.t_stage4(stage3)
t_s4 = self.stage4_conv_embed(stage3) # 1*384*14*14-->1*49*384
# print(t_s4.shape)
# print(';;;;;;;;;;;;;;;;;;;;;;;')
t_s4 = self.stage4_transformer(t_s4) # 1*49*384-->1*384*7*7
# print(t_s4.shape)
# print('::::::::::::::::::::')
c_s4 = self.c_stage4(c_s3) # 1*384*28*28-->1*512*14*14
stage4 = self.CTmerge4(
torch.cat([c_s4, F.interpolate(t_s4, size=c_s4.size()[2:], mode='bilinear', align_corners=True)],
dim=1)) # 1*512*14*14
# cs5
c_s5 = self.c_stage5(stage4) # 1*512*14*14-->1*1024*7*7
### decoder ###
decoder4 = torch.cat([c_s5, t_s4], dim=1) # 1*1408*7*7
decoder4 = self.decoder4(decoder4) # 1*1408*7*7-->1*512*7*7
decoder4 = F.interpolate(decoder4, size=c_s3.size()[2:], mode='bilinear',
align_corners=True) # 1*512*7*7-->1*512*28*28
decoder4 = self.sbr4(decoder4) # 1*512*28*28
# print(decoder4.shape)
decoder3 = torch.cat([decoder4, c_s3], dim=1) # 1*896*28*28
decoder3 = self.decoder3(decoder3) # 1*384*28*28
decoder3 = F.interpolate(decoder3, size=t_s2.size()[2:], mode='bilinear', align_corners=True) # 1*384*28*28
decoder3 = self.sbr3(decoder3) # 1*384*28*28
# print(decoder3.shape)
decoder2 = torch.cat([decoder3, t_s2], dim=1) # 1*576*28*28
decoder2 = self.decoder2(decoder2) # 1*192*28*28
decoder2 = F.interpolate(decoder2, size=c_s1.size()[2:], mode='bilinear', align_corners=True) # 1*192*112*112
decoder2 = self.sbr2(decoder2) # 1*192*112*112
# print(decoder2.shape)
decoder1 = torch.cat([decoder2, c_s1], dim=1) # 1*256*112*112
decoder1 = self.decoder1(decoder1) # 1*16*112*112
# print(decoder1.shape)
final = F.interpolate(decoder1, size=input.size()[2:], mode='bilinear', align_corners=True) # 1*16*224*224
# print(final.shape)
# final = self.sbr1(decoder1)
# print(final.shape)
final = self.head(final) # 1*3*224*224
return final
if __name__ == '__main__':
x = torch.rand(1, 3, 224, 224).cuda()
model = DBNet(img_size=224, in_channels=3, num_classes=7).cuda()
y = model(x)
print(y.shape)
# torch.Size([1, 7, 224, 224]) |