English
cloudseg-models / models /cdnetv1.py
XavierJiezou's picture
Add files using upload-large-folder tool
63a9590 verified
raw
history blame
13.5 kB
# -*- coding: utf-8 -*-
# @Time : 2024/7/24 上午11:36
# @Author : xiaoshun
# @Email : 3038523973@qq.com
# @File : cdnetv1.py
# @Software: PyCharm
"""Cloud detection Network"""
"""Cloud detection Network"""
"""
This is the implementation of CDnetV1 without multi-scale inputs. This implementation uses ResNet by default.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
affine_par = True
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
padding = dilation
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
padding=padding, bias=False, dilation=dilation)
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
for i in self.bn2.parameters():
i.requires_grad = False
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par)
for i in self.bn3.parameters():
i.requires_grad = False
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Classifier_Module(nn.Module):
def __init__(self, dilation_series, padding_series, num_classes):
super(Classifier_Module, self).__init__()
self.conv2d_list = nn.ModuleList()
for dilation, padding in zip(dilation_series, padding_series):
self.conv2d_list.append(
nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True))
for m in self.conv2d_list:
m.weight.data.normal_(0, 0.01)
def forward(self, x):
out = self.conv2d_list[0](x)
for i in range(len(self.conv2d_list) - 1):
out += self.conv2d_list[i + 1](x)
return out
class _ConvBNReLU(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, norm_layer=nn.BatchNorm2d):
super(_ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False)
self.bn = norm_layer(out_channels)
self.relu = nn.ReLU(True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class _ASPPConv(nn.Module):
def __init__(self, in_channels, out_channels, atrous_rate, norm_layer):
super(_ASPPConv, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
def forward(self, x):
return self.block(x)
class _AsppPooling(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer):
super(_AsppPooling, self).__init__()
self.gap = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
def forward(self, x):
size = x.size()[2:]
pool = self.gap(x)
out = F.interpolate(pool, size, mode='bilinear', align_corners=True)
return out
class _ASPP(nn.Module):
def __init__(self, in_channels, atrous_rates, norm_layer):
super(_ASPP, self).__init__()
out_channels = 512 # changed from 256
self.b0 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
rate1, rate2, rate3 = tuple(atrous_rates)
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
# self.project = nn.Sequential(
# nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
# norm_layer(out_channels),
# nn.ReLU(True),
# nn.Dropout(0.5))
self.dropout2d = nn.Dropout2d(0.3)
def forward(self, x):
feat1 = self.dropout2d(self.b0(x))
feat2 = self.dropout2d(self.b1(x))
feat3 = self.dropout2d(self.b2(x))
feat4 = self.dropout2d(self.b3(x))
feat5 = self.dropout2d(self.b4(x))
x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
# x = self.project(x)
return x
class _FPM(nn.Module):
def __init__(self, in_channels, num_classes, norm_layer=nn.BatchNorm2d):
super(_FPM, self).__init__()
self.aspp = _ASPP(in_channels, [6, 12, 18], norm_layer=norm_layer)
# self.dropout2d = nn.Dropout2d(0.5)
def forward(self, x):
x = torch.cat((x, self.aspp(x)), dim=1)
# x = self.dropout2d(x) # added
return x
class BR(nn.Module):
def __init__(self, num_classes, stride=1, downsample=None):
super(BR, self).__init__()
self.conv1 = conv3x3(num_classes, num_classes * 16, stride)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(num_classes * 16, num_classes)
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
out += residual
return out
class CDnetV1(nn.Module):
def __init__(self, in_channels=3,block=Bottleneck, layers=[3, 4, 6, 3], num_classes=21, aux=True):
self.inplanes = 64
self.aux = aux
super().__init__()
# self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
# self.bn1 = nn.BatchNorm2d(64, affine = affine_par)
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64, affine=affine_par)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64, affine=affine_par)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(64, affine=affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
# self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes)
self.res5_con1x1 = nn.Sequential(
nn.Conv2d(1024 + 2048, 512, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(512),
nn.ReLU(True)
)
self.fpm1 = _FPM(512, num_classes)
self.fpm2 = _FPM(512, num_classes)
self.fpm3 = _FPM(256, num_classes)
self.br1 = BR(num_classes)
self.br2 = BR(num_classes)
self.br3 = BR(num_classes)
self.br4 = BR(num_classes)
self.br5 = BR(num_classes)
self.br6 = BR(num_classes)
self.br7 = BR(num_classes)
self.predict1 = self._predict_layer(512 * 6, num_classes)
self.predict2 = self._predict_layer(512 * 6, num_classes)
self.predict3 = self._predict_layer(512 * 5 + 256, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, 0.01)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# for i in m.parameters():
# i.requires_grad = False
def _predict_layer(self, in_channels, num_classes):
return nn.Sequential(nn.Conv2d(in_channels, 256, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.Dropout2d(0.1),
nn.Conv2d(256, num_classes, kernel_size=3, stride=1, padding=1, bias=True))
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion, affine=affine_par))
for i in downsample._modules['1'].parameters():
i.requires_grad = False
layers = []
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation))
return nn.Sequential(*layers)
# def _make_pred_layer(self,block, dilation_series, padding_series,num_classes):
# return block(dilation_series,padding_series,num_classes)
def base_forward(self, x):
x = self.relu(self.bn1(self.conv1(x)))
size_conv1 = x.size()[2:]
x = self.relu(self.bn2(self.conv2(x)))
x = self.relu(self.bn3(self.conv3(x)))
x = self.maxpool(x)
x = self.layer1(x)
res2 = x
x = self.layer2(x)
res3 = x
x = self.layer3(x)
res4 = x
x = self.layer4(x)
x = self.res5_con1x1(torch.cat([x, res4], dim=1))
return x, res3, res2, size_conv1
def forward(self, x):
size = x.size()[2:]
score1, score2, score3, size_conv1 = self.base_forward(x)
# outputs = list()
score1 = self.fpm1(score1)
score1 = self.predict1(score1) # 1/8
predict1 = score1
score1 = self.br1(score1)
score2 = self.fpm2(score2)
score2 = self.predict2(score2) # 1/8
predict2 = score2
# first fusion
score2 = self.br2(score2) + score1
score2 = self.br3(score2)
score3 = self.fpm3(score3)
score3 = self.predict3(score3) # 1/4
predict3 = score3
score3 = self.br4(score3)
# second fusion
size_score3 = score3.size()[2:]
score3 = score3 + F.interpolate(score2, size_score3, mode='bilinear', align_corners=True)
score3 = self.br5(score3)
# upsampling + BR
score3 = F.interpolate(score3, size_conv1, mode='bilinear', align_corners=True)
score3 = self.br6(score3)
score3 = F.interpolate(score3, size, mode='bilinear', align_corners=True)
score3 = self.br7(score3)
# if self.aux:
# auxout = self.dsn(mid)
# auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True)
# #outputs.append(auxout)
return score3
# return score3, predict1, predict2, predict3
if __name__ == '__main__':
model = CDnetV1(num_classes=21)
fake_image = torch.randn(2, 3, 224, 224)
outputs = model(fake_image)
for out in outputs:
print(out.shape)
# torch.Size([2, 21, 224, 224])
# torch.Size([2, 21, 29, 29])
# torch.Size([2, 21, 29, 29])
# torch.Size([2, 21, 57, 57])