File size: 1,774 Bytes
99200a9 35ef036 e6178ec 35ef036 99200a9 35ef036 99200a9 e6178ec 99200a9 e6178ec 99200a9 e6178ec 99200a9 e6178ec 99200a9 e6178ec 99200a9 e6178ec 99200a9 e6178ec 99200a9 e6178ec 99200a9 e6178ec 99200a9 e6178ec 99200a9 e6178ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
base_model: jinaai/jina-embeddings-v2-base-zh
language:
- zh
- en
library_name: transformers.js
license: apache-2.0
tags:
- feature-extraction
- sentence-similarity
- mteb
- sentence_transformers
- transformers
inference: false
---
https://huggingface.co/jinaai/jina-embeddings-v2-base-zh with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
You can then use the model to compute embeddings, as follows:
```js
import { pipeline, cos_sim } from '@xenova/transformers';
// Create a feature extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/jina-embeddings-v2-base-zh', {
quantized: false, // Comment out this line to use the quantized version
});
// Compute sentence embeddings
const texts = ['How is the weather today?', '今天天气怎么样?'];
const output = await extractor(texts, { pooling: 'mean', normalize: true });
// Tensor {
// dims: [2, 768],
// type: 'float32',
// data: Float32Array(1536)[...],
// size: 1536
// }
// Compute cosine similarity between the two embeddings
const score = cos_sim(output[0].data, output[1].data);
console.log(score);
// 0.7860610759096025
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|