|
--- |
|
base_model: vikhyatk/moondream2 |
|
library_name: transformers.js |
|
license: apache-2.0 |
|
pipeline_tag: image-text-to-text |
|
--- |
|
|
|
https://huggingface.co/vikhyatk/moondream2 with ONNX weights to be compatible with Transformers.js. |
|
|
|
|
|
## Usage (Transformers.js) |
|
|
|
> [!IMPORTANT] |
|
> NOTE: Moondream support is experimental and requires you to install Transformers.js [v3](https://github.com/xenova/transformers.js/tree/v3) from source. |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [GitHub](https://github.com/xenova/transformers.js/tree/v3) using: |
|
```bash |
|
npm install xenova/transformers.js#v3 |
|
``` |
|
|
|
**Example:** |
|
```js |
|
import { AutoProcessor, AutoTokenizer, Moondream1ForConditionalGeneration, RawImage } from '@xenova/transformers'; |
|
|
|
// Load processor, tokenizer and model |
|
const model_id = 'Xenova/moondream2'; |
|
const processor = await AutoProcessor.from_pretrained(model_id); |
|
const tokenizer = await AutoTokenizer.from_pretrained(model_id); |
|
const model = await Moondream1ForConditionalGeneration.from_pretrained(model_id, { |
|
dtype: { |
|
embed_tokens: 'fp16', // or 'fp32' |
|
vision_encoder: 'fp16', // or 'q8' |
|
decoder_model_merged: 'q4', // or 'q4f16' or 'q8' |
|
}, |
|
device: 'webgpu', |
|
}); |
|
|
|
// Prepare text inputs |
|
const prompt = 'Describe this image.'; |
|
const text = `<image>\n\nQuestion: ${prompt}\n\nAnswer:`; |
|
const text_inputs = tokenizer(text); |
|
|
|
// Prepare vision inputs |
|
const url = 'https://huggingface.co/vikhyatk/moondream1/resolve/main/assets/demo-1.jpg'; |
|
const image = await RawImage.fromURL(url); |
|
const vision_inputs = await processor(image); |
|
|
|
// Generate response |
|
const output = await model.generate({ |
|
...text_inputs, |
|
...vision_inputs, |
|
do_sample: false, |
|
max_new_tokens: 64, |
|
}); |
|
const decoded = tokenizer.batch_decode(output, { skip_special_tokens: false }); |
|
console.log(decoded); |
|
// [ |
|
// '<|endoftext|><image>\n\n' + |
|
// 'Question: Describe this image.\n\n' + |
|
// 'Answer: A hand is holding a white book titled "The Little Book of Deep Learning" against a backdrop of a balcony with a railing and a view of a building and trees.<|endoftext|>' |
|
// ] |
|
``` |
|
|
|
We also released an online demo, which you can try yourself: https://huggingface.co/spaces/Xenova/experimental-moondream-webgpu |
|
|
|
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/9q6LTQIYiI3qKrKfAb4D8.mp4"></video> |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |