File size: 12,113 Bytes
4b426c4 6e9c369 4b426c4 366d154 bd6fd75 8e622c8 bd6fd75 6e9c369 aacb405 366d154 bd6fd75 aacb405 8e622c8 4b426c4 8e622c8 4b426c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import json
from typing import Any, Dict, List
import tensorflow as tf
from tensorflow import keras
import base64
import io
import os
import numpy as np
from PIL import Image
import youtube_transcript_api2
import json
import re
import requests
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
TextClassificationPipeline,
)
from typing import Any, Dict, List
CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity
PROFANITY_CONVERTED = '*****' # Safer version for tokenizing
NUM_DECIMALS = 3
# https://www.fincher.org/Utilities/CountryLanguageList.shtml
# https://lingohub.com/developers/supported-locales/language-designators-with-regions
LANGUAGE_PREFERENCE_LIST = ['en-GB', 'en-US', 'en-CA', 'en-AU', 'en-NZ', 'en-ZA',
'en-IE', 'en-IN', 'en-JM', 'en-BZ', 'en-TT', 'en-PH', 'en-ZW',
'en']
def parse_transcript_json(json_data, granularity):
assert json_data['wireMagic'] == 'pb3'
assert granularity in ('word', 'chunk')
# TODO remove bracketed words?
# (kiss smacks)
# (upbeat music)
# [text goes here]
# Some manual transcripts aren't that well formatted... but do have punctuation
# https://www.youtube.com/watch?v=LR9FtWVjk2c
parsed_transcript = []
events = json_data['events']
for event_index, event in enumerate(events):
segments = event.get('segs')
if not segments:
continue
# This value is known (when phrase appears on screen)
start_ms = event['tStartMs']
total_characters = 0
new_segments = []
for seg in segments:
# Replace \n, \t, etc. with space
text = ' '.join(seg['utf8'].split())
# Remove zero-width spaces and strip trailing and leading whitespace
text = text.replace('\u200b', '').replace('\u200c', '').replace(
'\u200d', '').replace('\ufeff', '').strip()
# Alternatively,
# text = text.encode('ascii', 'ignore').decode()
# Needed for auto-generated transcripts
text = text.replace(PROFANITY_RAW, PROFANITY_CONVERTED)
if not text:
continue
offset_ms = seg.get('tOffsetMs', 0)
new_segments.append({
'text': text,
'start': round((start_ms + offset_ms)/1000, NUM_DECIMALS)
})
total_characters += len(text)
if not new_segments:
continue
if event_index < len(events) - 1:
next_start_ms = events[event_index + 1]['tStartMs']
total_event_duration_ms = min(
event.get('dDurationMs', float('inf')), next_start_ms - start_ms)
else:
total_event_duration_ms = event.get('dDurationMs', 0)
# Ensure duration is non-negative
total_event_duration_ms = max(total_event_duration_ms, 0)
avg_seconds_per_character = (
total_event_duration_ms/total_characters)/1000
num_char_count = 0
for seg_index, seg in enumerate(new_segments):
num_char_count += len(seg['text'])
# Estimate segment end
seg_end = seg['start'] + \
(num_char_count * avg_seconds_per_character)
if seg_index < len(new_segments) - 1:
# Do not allow longer than next
seg_end = min(seg_end, new_segments[seg_index+1]['start'])
seg['end'] = round(seg_end, NUM_DECIMALS)
parsed_transcript.append(seg)
final_parsed_transcript = []
for i in range(len(parsed_transcript)):
word_level = granularity == 'word'
if word_level:
split_text = parsed_transcript[i]['text'].split()
elif granularity == 'chunk':
# Split on space after punctuation
split_text = re.split(
r'(?<=[.!?,-;])\s+', parsed_transcript[i]['text'])
if len(split_text) == 1:
split_on_whitespace = parsed_transcript[i]['text'].split()
if len(split_on_whitespace) >= 8: # Too many words
# Rather split on whitespace instead of punctuation
split_text = split_on_whitespace
else:
word_level = True
else:
raise ValueError('Unknown granularity')
segment_end = parsed_transcript[i]['end']
if i < len(parsed_transcript) - 1:
segment_end = min(segment_end, parsed_transcript[i+1]['start'])
segment_duration = segment_end - parsed_transcript[i]['start']
num_chars_in_text = sum(map(len, split_text))
num_char_count = 0
current_offset = 0
for s in split_text:
num_char_count += len(s)
next_offset = (num_char_count/num_chars_in_text) * segment_duration
word_start = round(
parsed_transcript[i]['start'] + current_offset, NUM_DECIMALS)
word_end = round(
parsed_transcript[i]['start'] + next_offset, NUM_DECIMALS)
# Make the reasonable assumption that min wps is 1.5
final_parsed_transcript.append({
'text': s,
'start': word_start,
'end': min(word_end, word_start + 1.5) if word_level else word_end
})
current_offset = next_offset
return final_parsed_transcript
def list_transcripts(video_id):
try:
return youtube_transcript_api2.YouTubeTranscriptApi.list_transcripts(video_id)
except json.decoder.JSONDecodeError:
return None
WORDS_TO_REMOVE = [
'[Music]'
'[Applause]'
'[Laughter]'
]
def get_words(video_id, transcript_type='auto', fallback='manual', filter_words_to_remove=True, granularity='word'):
"""Get parsed video transcript with caching system
returns None if not processed yet and process is False
"""
raw_transcript_json = None
try:
transcript_list = list_transcripts(video_id)
if transcript_list is not None:
if transcript_type == 'manual':
ts = transcript_list.find_manually_created_transcript(
LANGUAGE_PREFERENCE_LIST)
else:
ts = transcript_list.find_generated_transcript(
LANGUAGE_PREFERENCE_LIST)
raw_transcript = ts._http_client.get(
f'{ts._url}&fmt=json3').content
if raw_transcript:
raw_transcript_json = json.loads(raw_transcript)
except (youtube_transcript_api2.TooManyRequests, youtube_transcript_api2.YouTubeRequestFailed):
raise # Cannot recover from these errors and do not mark as empty transcript
except requests.exceptions.RequestException: # Can recover
return get_words(video_id, transcript_type, fallback, granularity)
except youtube_transcript_api2.CouldNotRetrieveTranscript: # Retrying won't solve
pass # Mark as empty transcript
except json.decoder.JSONDecodeError:
return get_words(video_id, transcript_type, fallback, granularity)
if not raw_transcript_json and fallback is not None:
return get_words(video_id, transcript_type=fallback, fallback=None, granularity=granularity)
if raw_transcript_json:
processed_transcript = parse_transcript_json(
raw_transcript_json, granularity)
if filter_words_to_remove:
processed_transcript = list(
filter(lambda x: x['text'] not in WORDS_TO_REMOVE, processed_transcript))
else:
processed_transcript = raw_transcript_json # Either None or []
return processed_transcript
def word_start(word):
return word['start']
def word_end(word):
return word.get('end', word['start'])
def extract_segment(words, start, end, map_function=None):
"""Extracts all words with time in [start, end]"""
a = max(binary_search_below(words, 0, len(words), start), 0)
b = min(binary_search_above(words, -1, len(words) - 1, end) + 1, len(words))
to_transform = map_function is not None and callable(map_function)
return [
map_function(words[i]) if to_transform else words[i] for i in range(a, b)
]
def avg(*items):
return sum(items)/len(items)
def binary_search_below(transcript, start_index, end_index, time):
if start_index >= end_index:
return end_index
middle_index = (start_index + end_index) // 2
middle = transcript[middle_index]
middle_time = avg(word_start(middle), word_end(middle))
if time <= middle_time:
return binary_search_below(transcript, start_index, middle_index, time)
else:
return binary_search_below(transcript, middle_index + 1, end_index, time)
def binary_search_above(transcript, start_index, end_index, time):
if start_index >= end_index:
return end_index
middle_index = (start_index + end_index + 1) // 2
middle = transcript[middle_index]
middle_time = avg(word_start(middle), word_end(middle))
if time >= middle_time:
return binary_search_above(transcript, middle_index, end_index, time)
else:
return binary_search_above(transcript, start_index, middle_index - 1, time)
class PreTrainedPipeline():
def __init__(self, path: str):
# load the model
self.model = keras.models.load_model(os.path.join(path, "tf_model.h5"))
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
# TEMP testing
# data = [{"video_id": "pqh4LfPeCYs", "start": 835.933, "end": 927.581, "category": "sponsor"}]
words = get_words("pqh4LfPeCYs")
segment = extract_segment(words, 835.933, 927.581)
# END TEMP
# convert img to numpy array, resize and normalize to make the prediction
img = np.array(inputs)
im = tf.image.resize(img, (128, 128))
im = tf.cast(im, tf.float32) / 255.0
pred_mask = self.model.predict(im[tf.newaxis, ...])
# take the best performing class for each pixel
# the output of argmax looks like this [[1, 2, 0], ...]
pred_mask_arg = tf.argmax(pred_mask, axis=-1)
labels = []
# convert the prediction mask into binary masks for each class
binary_masks = {}
mask_codes = {}
# when we take tf.argmax() over pred_mask, it becomes a tensor object
# the shape becomes TensorShape object, looking like this TensorShape([128])
# we need to take get shape, convert to list and take the best one
rows = pred_mask_arg[0][1].get_shape().as_list()[0]
cols = pred_mask_arg[0][2].get_shape().as_list()[0]
for cls in range(pred_mask.shape[-1]):
binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
for row in range(rows):
for col in range(cols):
if pred_mask_arg[0][row][col] == cls:
binary_masks[f"mask_{cls}"][row][col] = 1
else:
binary_masks[f"mask_{cls}"][row][col] = 0
mask = binary_masks[f"mask_{cls}"]
mask *= 255
img = Image.fromarray(mask.astype(np.int8), mode="L")
# we need to make it readable for the widget
with io.BytesIO() as out:
img.save(out, format="PNG")
png_string = out.getvalue()
mask = base64.b64encode(png_string).decode("utf-8")
mask_codes[f"mask_{cls}"] = mask
# widget needs the below format, for each class we return label and mask string
labels.append({
"label": f"LABEL_{cls}",
"mask": mask_codes[f"mask_{cls}"],
"score": 1.0,
"words": segment
})
return labels |