model documentation

#1
by nazneen - opened
Files changed (1) hide show
  1. README.md +170 -0
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - t5
5
+ - text-2-text-generation
6
+ ---
7
+
8
+ # Model Card for sponsorblock-small
9
+
10
+ # Model Details
11
+
12
+ ## Model Description
13
+ Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.
14
+ - **Developed by:** More information needed
15
+ - **Shared by [Optional]:** Joshua Lochner
16
+ - **Model type:** Text2Text Generation
17
+ - **Language(s) (NLP):** More information needed
18
+ - **License:** cc-by-nc-sa-4.0
19
+ - **Parent Model:** [All T5 Checkpoints](https://huggingface.co/models?search=t5)
20
+ - **Resources for more information:**
21
+ - [GitHub Repo](https://github.com/xenova/sponsorblock-ml)
22
+ - [Model Demo Space](https://huggingface.co/spaces/Xenova/sponsorblock-ml)
23
+
24
+
25
+
26
+
27
+
28
+
29
+ # Uses
30
+
31
+
32
+ ## Direct Use
33
+ This model can be used for the task of Text2TextGeneration
34
+
35
+ ## Downstream Use [Optional]
36
+
37
+ More information needed.
38
+
39
+ ## Out-of-Scope Use
40
+
41
+ The model should not be used to intentionally create hostile or alienating environments for people.
42
+
43
+ # Bias, Risks, and Limitations
44
+
45
+
46
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
47
+
48
+ ## Recommendations
49
+
50
+
51
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
52
+
53
+ # Training Details
54
+
55
+ ## Training Data
56
+
57
+ The model was trained using the [SponsorBlock database](https://sponsor.ajay.app/database).
58
+
59
+
60
+
61
+ ## Training Procedure
62
+
63
+
64
+ ### Preprocessing
65
+
66
+ More information needed
67
+
68
+ ### Speeds, Sizes, Times
69
+
70
+ More information needed
71
+
72
+ # Evaluation
73
+
74
+
75
+ ## Testing Data, Factors & Metrics
76
+
77
+ ### Testing Data
78
+
79
+ More information needed
80
+
81
+ ### Factors
82
+ More information needed
83
+
84
+ ### Metrics
85
+
86
+ More information needed
87
+
88
+
89
+ ## Results
90
+
91
+ More information needed
92
+
93
+
94
+
95
+ # Model Examination
96
+
97
+ More information needed
98
+
99
+ # Environmental Impact
100
+
101
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
102
+
103
+ - **Hardware Type:** More information needed
104
+ - **Hours used:** More information needed
105
+ - **Cloud Provider:** More information needed
106
+ - **Compute Region:** More information needed
107
+ - **Carbon Emitted:** More information needed
108
+
109
+ # Technical Specifications [optional]
110
+
111
+ ## Model Architecture and Objective
112
+
113
+ More information needed
114
+
115
+ ## Compute Infrastructure
116
+
117
+ More information needed
118
+
119
+ ### Hardware
120
+
121
+
122
+ More information needed
123
+
124
+ ### Software
125
+
126
+ More information needed.
127
+
128
+ # Citation
129
+
130
+
131
+ **BibTeX:**
132
+
133
+ More information needed.
134
+
135
+
136
+
137
+ **APA:**
138
+
139
+ More information needed
140
+
141
+ # Glossary [optional]
142
+
143
+ More information needed
144
+
145
+ # More Information [optional]
146
+ More information needed
147
+
148
+ # Model Card Authors [optional]
149
+
150
+ Joshua Lochner in collaboration with Ezi Ozoani and the Hugging Face team
151
+
152
+ # Model Card Contact
153
+
154
+ More information needed
155
+
156
+ # How to Get Started with the Model
157
+
158
+ Use the code below to get started with the model.
159
+
160
+ <details>
161
+ <summary> Click to expand </summary>
162
+
163
+ ```python
164
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
165
+
166
+ tokenizer = AutoTokenizer.from_pretrained("Xenova/sponsorblock-small")
167
+
168
+ model = AutoModelForSeq2SeqLM.from_pretrained("Xenova/sponsorblock-small")
169
+ ```
170
+ </details>