Edit model card

zephyr-7b-lora-64-no-quant-6k

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the updated and the original datasets. It achieves the following results on the evaluation set:

  • Loss: 0.5788
  • Rewards/chosen: -0.3940
  • Rewards/rejected: -0.7469
  • Rewards/accuracies: 0.7200
  • Rewards/margins: 0.3529
  • Logps/rejected: -332.2092
  • Logps/chosen: -323.4424
  • Logits/rejected: -2.2597
  • Logits/chosen: -2.3729

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 256
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5916 0.42 100 0.6025 -0.2538 -0.5140 0.6940 0.2602 -308.9146 -309.4196 -2.5166 -2.6027
0.5667 0.84 200 0.5788 -0.3940 -0.7469 0.7200 0.3529 -332.2092 -323.4424 -2.2597 -2.3729

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for YYYYYYibo/zephyr-7b-lora-64-no-quant-6k

Adapter
(136)
this model