🚨🚨🚨 ATTENTION! 🚨🚨🚨

Use an updated model: https://huggingface.co/Yehor/w2v-bert-uk-v2.1


w2v-bert-uk v1

Community

Google Colab

You can run this model using a Google Colab notebook: https://colab.research.google.com/drive/1QoKw2DWo5a5XYw870cfGE3dJf1WjZgrj?usp=sharing

Metrics

  • AM:
    • WER: 0.0727
    • CER: 0.0151
    • Accuracy: 92.73%
  • AM + LM:
    • WER: 0.0655
    • CER: 0.0139
    • Accuracy: 93.45%

Hyperparameters

This model was trained with the following hparams using 2 RTX A4000:

torchrun --standalone --nnodes=1 --nproc-per-node=2 ../train_w2v2_bert.py \
  --custom_set ~/cv10/train.csv \
  --custom_set_eval ~/cv10/test.csv \
  --num_train_epochs 15 \
  --tokenize_config . \
  --w2v2_bert_model facebook/w2v-bert-2.0 \
  --batch 4 \
  --num_proc 5 \
  --grad_accum 1 \
  --learning_rate 3e-5 \
  --logging_steps 20 \
  --eval_step 500 \
  --group_by_length \
  --attention_dropout 0.0 \
  --activation_dropout 0.05 \
  --feat_proj_dropout 0.05 \
  --feat_quantizer_dropout 0.0 \
  --hidden_dropout 0.05 \
  --layerdrop 0.0 \
  --final_dropout 0.0 \
  --mask_time_prob 0.0 \
  --mask_time_length 10 \
  --mask_feature_prob 0.0 \
  --mask_feature_length 10

Usage

# pip install -U torch soundfile transformers

import torch
import soundfile as sf
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor

# Config
model_name = 'Yehor/w2v-bert-2.0-uk'
device = 'cuda:1' # or cpu
sampling_rate = 16_000

# Load the model
asr_model = AutoModelForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2BertProcessor.from_pretrained(model_name)

paths = [
  'sample1.wav',
]

# Extract audio
audio_inputs = []
for path in paths:
  audio_input, _ = sf.read(path)
  audio_inputs.append(audio_input)

# Transcribe the audio
inputs = processor(audio_inputs, sampling_rate=sampling_rate).input_features
features = torch.tensor(inputs).to(device)

with torch.no_grad():
  logits = asr_model(features).logits

predicted_ids = torch.argmax(logits, dim=-1)
predictions = processor.batch_decode(predicted_ids)

# Log results
print('Predictions:')
print(predictions)
Downloads last month
50
Safetensors
Model size
606M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Yehor/w2v-bert-uk

Finetuned
(233)
this model

Spaces using Yehor/w2v-bert-uk 2

Evaluation results