What is this model?
- 東北大学のBERT large JapaneseをRustで使える様に変換
- cl-tohoku/bert-large-japanese
How to Try
1. Clone
git clone https://huggingface.co/Yokohide031/rust_cl-tohoku_bert-large-japanese
2. Create Project
cargo new <projectName>
3. Edit main.rs
extern crate anyhow;
use rust_bert::bert::{BertConfig, BertForMaskedLM};
use rust_bert::Config;
use rust_tokenizers::tokenizer::{BertTokenizer, MultiThreadedTokenizer, TruncationStrategy};
use rust_tokenizers::vocab::Vocab;
use tch::{nn, no_grad, Device, Tensor};
use std::path::PathBuf;
fn get_path(item: String) -> PathBuf {
let mut resource_dir = PathBuf::from("path/to/rust_cl-tohoku_bert-large-japanese/");
resource_dir.push(&item);
println!("{:?}", resource_dir);
return resource_dir;
}
fn input(display: String) -> String {
let mut text = String::new();
println!("{}", display);
std::io::stdin().read_line(&mut text).unwrap();
return text.trim().to_string();
}
fn main() -> anyhow::Result<()> {
// Resources paths
let model_path: PathBuf = get_path(String::from("rust_model.ot"));
let vocab_path: PathBuf = get_path(String::from("vocab.txt"));
let config_path: PathBuf = get_path(String::from("config.json"));
// Set-up masked LM model
let device = Device::Cpu;
let mut vs = nn::VarStore::new(device);
let config = BertConfig::from_file(config_path);
let bert_model = BertForMaskedLM::new(&vs.root(), &config);
vs.load(model_path)?;
// Define input
let inp = input(String::from("Input: "));
let inp = inp.replace("*", "[MASK]");
let input = [inp];
let tokenizer: BertTokenizer =
BertTokenizer::from_file(vocab_path.to_str().unwrap(), false, false).unwrap();
let owakatied = &tokenizer.tokenize_list(&input);
let tokenized_input = tokenizer.encode_list(&input, 128, &TruncationStrategy::LongestFirst, 0);
let mut mask_index: usize = 0;
for (i, m) in owakatied[0].iter().enumerate() {
if m == "[MASK]" {
mask_index = i+1;
break;
}
}
let max_len = tokenized_input
.iter()
.map(|input| input.token_ids.len())
.max()
.unwrap();
let tokenized_input = tokenized_input
.iter()
.map(|input| input.token_ids.clone())
.map(|mut input| {
input.extend(vec![0; max_len - input.len()]);
input
})
.map(|input| Tensor::of_slice(&(input)))
.collect::<Vec<_>>();
let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device);
// Forward pass
let model_output = no_grad(|| {
bert_model.forward_t(
Some(&input_tensor),
None,
None,
None,
None,
None,
None,
false,
)
});
println!("MASK: {}", mask_index);
// Print masked tokens
let index_1 = model_output
.prediction_scores
.get(0)
.get(mask_index as i64)
.argmax(0, false);
let word = tokenizer.vocab().id_to_token(&index_1.int64_value(&[]));
println!("{}", word);
Ok(())
}
※ 上のコードでは、[MASK]の代わりに "*" を使うことになってます。
Licenses
The pretrained models are distributed under the terms of the Creative Commons Attribution-ShareAlike 3.0.
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.