metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
- spam
model-index:
- name: ZachBeesley/Spam-Detector
results: []
datasets:
- sms_spam
widget:
- text: >-
WINNER!! As a valued network customer you have been selected to receivea
£900 prize reward! To claim call 09061701461. Claim code KL341. Valid 12
hours only.
example_title: Example 1
language:
- en
metrics:
- accuracy
ZachBeesley/Spam-Detector
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0093
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1740, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Epoch |
---|---|
0.0644 | 0 |
0.0209 | 1 |
0.0093 | 2 |
Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.1
- Tokenizers 0.13.3