|
--- |
|
license: mit |
|
base_model: Zagusan/Wikibot-3001 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Wikibot-3001 |
|
results: [] |
|
datasets: |
|
- mapama247/wikihow_es |
|
language: |
|
- es |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: Hola |
|
- text: ¿Cómo cocinar? |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Wikibot-3001 |
|
|
|
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the [mapama247/wikihow_es](https://huggingface.co/datasets/mapama247/wikihow_es) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9422 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- distributed_type: tpu |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 12 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 2.7432 | 1.0 | 5950 | 2.6109 | |
|
| 2.3556 | 2.0 | 11900 | 2.3059 | |
|
| 2.1872 | 3.0 | 17850 | 2.1738 | |
|
| 2.0891 | 4.0 | 23800 | 2.0990 | |
|
| 2.0306 | 5.0 | 29750 | 2.0579 | |
|
| 1.9975 | 6.0 | 35700 | 2.0395 | |
|
| 1.9909 | 7.0 | 5950 | 2.0208 | |
|
| 1.8924 | 8.0 | 11900 | 1.9678 | |
|
| 1.8281 | 9.0 | 17850 | 1.9422 | |
|
| 1.8376 | 10.0 | 5950 | 1.9576 | |
|
| 1.7802 | 11.0 | 11900 | 1.9212 | |
|
| 1.7465 | 12.0 | 17850 | 1.8996 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |