Zhang199's picture
Update README.md
6245e13 verified
metadata
license: apache-2.0
pipeline_tag: image-text-to-text

TinyLLaVA

arXivGithubDemo

Here, we introduce TinyLLaVA-Qwen2.5-3B-SigLIP , which is trained by the TinyLLaVA Factory codebase. For LLM and vision tower, we choose Qwen2.5-3B and siglip-so400m-patch14-384, respectively.

Usage

Execute the following test code:

from transformers import AutoTokenizer, AutoModelForCausalLM

hf_path = 'Zhang199/TinyLLaVA-Qwen2.5-3B-SigLIP'
model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
model.cuda()
config = model.config
tokenizer = AutoTokenizer.from_pretrained(hf_path, use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side)
prompt="What are these?"
image_url="http://images.cocodataset.org/test-stuff2017/000000000001.jpg"
output_text, genertaion_time = model.chat(prompt=prompt, image=image_url, tokenizer=tokenizer)

print('model output:', output_text)
print('runing time:', genertaion_time)

Result

model_name vqav2 gqa sqa textvqa MM-VET POPE MME MMMU
LLaVA-1.5-7B 78.5 62.0 66.8 58.2 30.5 85.9 1510.7 -
bczhou/TinyLLaVA-3.1B (our legacy model) 79.9 62.0 69.1 59.1 32.0 86.4 1464.9 -
tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B 78.4 61.6 64.4 53.6 26.9 86.4 1339.0 31.7
tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B 80.1 62.1 73.0 60.3 37.5 87.2 1466.4 38.4
Zhang199/TinyLLaVA-Qwen2-0.5B-SigLIP 72.33 55.84 60.14 45.17 19.5 86.59 1153 29.7
Zhang199/TinyLLaVA-Qwen2.5-3B-SigLIP 79.4 62.5 74.1 58.3 34.8 87.4 1438.7 39.9

P.S. TinyLLaVA Factory is an open-source modular codebase for small-scale LMMs with a focus on simplicity of code implementations, extensibility of new features, and reproducibility of training results. This code repository provides standard training&evaluating pipelines, flexible data preprocessing&model configurations, and easily extensible architectures. Users can customize their own LMMs with minimal coding effort and less coding mistake.

TinyLLaVA Factory integrates a suite of cutting-edge models and methods.

  • LLM currently supports OpenELM, TinyLlama, StableLM, Qwen, Gemma, Phi, and Qwen2.
  • Vision tower currently supports CLIP, SigLIP, Dino, and combination of CLIP and Dino.
  • Connector currently supports MLP, Qformer, and Resampler.