|
import logging |
|
import pdb |
|
import tqdm |
|
import numpy as np |
|
import open_clip |
|
import torch |
|
import torch.nn.functional as F |
|
import os |
|
from classname_and_prompt import * |
|
from torchrs.datasets import AID, RESISC45, EuroSATRGB |
|
from torch.utils.data import Dataset, DataLoader |
|
from PIL import Image |
|
import pandas as pd |
|
from clip_benchmark.datasets.builder import get_dataset_collate_fn |
|
from clip_benchmark.metrics.zeroshot_retrieval import recall_at_k, batchify, dataloader_with_indices |
|
from functools import reduce |
|
import cv2 |
|
from scipy.ndimage import maximum_filter |
|
from skimage import measure |
|
import json |
|
from datetime import datetime |
|
from torchvision import transforms |
|
|
|
|
|
def _convert_to_rgb(image): |
|
return image.convert('RGB') |
|
|
|
|
|
def get_preprocess(image_resolution=224, is_train=False, subset_name="clip", aug=None): |
|
|
|
if subset_name == "clip": |
|
normalize = transforms.Normalize( |
|
mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711] |
|
) |
|
elif subset_name == "imagenet": |
|
normalize = transforms.Normalize( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
) |
|
|
|
elif subset_name == "rs5m": |
|
normalize = transforms.Normalize( |
|
mean=[0.406, 0.423, 0.390], std=[0.188, 0.175, 0.185] |
|
) |
|
|
|
elif subset_name == "pub11": |
|
normalize = transforms.Normalize( |
|
mean=[0.445, 0.469, 0.441], std=[0.208, 0.193, 0.213] |
|
) |
|
|
|
elif subset_name == "rs3": |
|
normalize = transforms.Normalize( |
|
mean=[0.350, 0.356, 0.316], std=[0.158, 0.147, 0.143] |
|
) |
|
|
|
elif subset_name == "geometa": |
|
normalize = transforms.Normalize( |
|
mean=[0.320, 0.322, 0.285], std=[0.179, 0.168, 0.166] |
|
) |
|
|
|
if is_train: |
|
preprocess_train = transforms.Compose([ |
|
transforms.RandomResizedCrop( |
|
image_resolution, |
|
interpolation=transforms.InterpolationMode.BICUBIC, |
|
scale=(0.9, 1.0) |
|
), |
|
_convert_to_rgb, |
|
transforms.RandomHorizontalFlip(), |
|
transforms.RandomRotation(degrees=(0, 360)), |
|
transforms.ToTensor(), |
|
normalize, |
|
]) |
|
return preprocess_train |
|
else: |
|
preprocess_val = transforms.Compose([ |
|
transforms.Resize( |
|
size=image_resolution, |
|
interpolation=transforms.InterpolationMode.BICUBIC, |
|
), |
|
transforms.CenterCrop(image_resolution), |
|
_convert_to_rgb, |
|
transforms.ToTensor(), |
|
normalize, |
|
]) |
|
return preprocess_val |
|
|
|
|
|
def zeroshot_get_dataset(dataset_name, root, split, transform=None): |
|
|
|
if dataset_name == "EuroSAT": |
|
EuroSAT_root = os.path.join(root, "eurosat-rgb") |
|
os.makedirs(EuroSAT_root, exist_ok=True) |
|
dataset = EuroSATRGB( |
|
root=EuroSAT_root, |
|
transform=transform |
|
) |
|
dataset.classes = dataset.classes |
|
dataset.templates = RSEuroSAT.templates |
|
|
|
elif dataset_name == "AID": |
|
AID_root = os.path.join(root, "AID") |
|
os.makedirs(AID_root, exist_ok=True) |
|
dataset = AID( |
|
root=AID_root, |
|
transform=transform |
|
) |
|
dataset.classes = dataset.classes |
|
dataset.templates = RSAID.templates |
|
|
|
elif dataset_name == "RESISC45": |
|
RESISC45_root = os.path.join(root, "RESISC45") |
|
os.makedirs(RESISC45_root, exist_ok=True) |
|
dataset = RESISC45( |
|
root=RESISC45_root, |
|
transform=transform |
|
) |
|
dataset.classes = dataset.classes |
|
dataset.templates = RSRESISC45.templates |
|
|
|
dataset.classes = [dataset.classes[i].replace('_', ' ') for i in range(len(dataset.classes))] |
|
dataset.classes = [dataset.classes[i].replace('/', ' ') for i in range(len(dataset.classes))] |
|
dataset.classes = [dataset.classes[i].lower() for i in range(len(dataset.classes))] |
|
|
|
return dataset |
|
|
|
|
|
def zeroshot_classifier(model, classnames, templates, args): |
|
tokenizer = open_clip.tokenize |
|
with torch.no_grad(): |
|
zeroshot_weights = [] |
|
for classname in classnames: |
|
texts = [template.replace('{}', classname) for template in templates] |
|
context_length = 77 |
|
texts = tokenizer(texts, context_length=context_length).to(args.device) |
|
|
|
class_embeddings = model.encode_text(texts) |
|
class_embeddings = class_embeddings.mean(dim=0) |
|
class_embedding = F.normalize(class_embeddings, dim=-1) |
|
class_embedding /= class_embedding.norm() |
|
zeroshot_weights.append(class_embedding.cpu()) |
|
zeroshot_weights = torch.stack(zeroshot_weights, dim=1) |
|
return zeroshot_weights |
|
|
|
|
|
def zeroshot_evaluation(model, zeroshot_dataset, preprocess, args): |
|
|
|
dataset = zeroshot_get_dataset(dataset_name=zeroshot_dataset, split='test', root=args.test_dataset_dir, transform=preprocess) |
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, num_workers=args.workers) |
|
|
|
logging.info(f'Calculating classifier for {zeroshot_dataset}') |
|
classnames, prompt_templates = dataset.classes, dataset.templates |
|
import copy |
|
classnames = copy.deepcopy(classnames) |
|
classifier = zeroshot_classifier(model, classnames, prompt_templates, args) |
|
|
|
logging.info(f'Calculating image features for {zeroshot_dataset}') |
|
results = {} |
|
acc, features, labels = zeroshot_run(model, classifier, dataloader, args) |
|
logging.info(f'{zeroshot_dataset} zero-shot accuracy: {acc}%') |
|
results[f'{zeroshot_dataset}-zeroshot-acc'] = acc |
|
|
|
for key, item in results.items(): |
|
results[key] = float(item) |
|
|
|
return results |
|
|
|
|
|
def zeroshot_accuracy(output, target, topk=(1,)): |
|
pred = output.topk(max(topk), 1, True, True)[1].t() |
|
correct = pred.eq(target.view(1, -1).expand_as(pred)) |
|
|
|
return float(correct[0].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) * 100 / len(target) |
|
|
|
|
|
def zeroshot_run(model, classifier, dataloader, args): |
|
with torch.no_grad(): |
|
all_image_features = [] |
|
all_labels = [] |
|
all_logits = [] |
|
for images, target in tqdm.tqdm(dataloader, unit_scale=args.batch_size): |
|
images = images.to(args.device) |
|
image_features = model.encode_image(images) |
|
image_features = F.normalize(image_features, dim=-1).detach().cpu() |
|
logits = 100. * image_features @ classifier |
|
all_image_features.append(image_features) |
|
all_labels.append(target) |
|
all_logits.append(logits) |
|
|
|
all_image_features = torch.cat(all_image_features) |
|
all_labels = torch.cat(all_labels) |
|
all_logits = torch.cat(all_logits) |
|
|
|
acc = zeroshot_accuracy(all_logits, all_labels, topk=(1,)) |
|
return round(acc, 2), all_image_features, all_labels |
|
|
|
|
|
class CsvDataset(Dataset): |
|
def __init__(self, input_filename, transforms, img_key, caption_key, sep="\t", nori_dataset=False, |
|
images_dir=''): |
|
logging.debug(f'Loading csv data from {input_filename}.') |
|
if 'rsicd' in input_filename: |
|
df = pd.read_csv(input_filename, sep=sep, encoding='gb18030') |
|
else: |
|
df = pd.read_csv(input_filename, sep=sep) |
|
|
|
self.nori_dataset = nori_dataset |
|
self.f = None |
|
self.images_dir = images_dir |
|
|
|
self.images = df[img_key].tolist() |
|
self.captions = df[caption_key].tolist() |
|
|
|
self.transforms = transforms |
|
|
|
self.duplicate() |
|
|
|
logging.debug('Done loading data.') |
|
|
|
def __len__(self): |
|
return len(self.images) |
|
|
|
def __getitem__(self, index): |
|
texts = self.captions[index] |
|
image = Image.open(os.path.join(self.images_dir, str(self.images[index]))) |
|
image = self.transforms(image) |
|
|
|
return image, texts |
|
|
|
def duplicate(self): |
|
unique_images, indexs = np.unique(self.images, return_index=True) |
|
if len(unique_images) != len(self.images): |
|
logging.debug( |
|
f'Amoung all {len(self.images)} images, there are only {len(unique_images)} unique images. Dupication will be performed to enable one-image-to-multiple-text retrieval.') |
|
self.duplicated_images = [] |
|
self.duplicated_captions = [] |
|
for index in indexs: |
|
self.duplicated_images.append(self.images[index]) |
|
same_indexs = [i for i, x in enumerate(self.images) if x == self.images[index]] |
|
captions = [] |
|
for same_index in same_indexs: |
|
captions.append(self.captions[same_index]) |
|
self.duplicated_captions.append(captions) |
|
|
|
self.images = self.duplicated_images |
|
self.captions = self.duplicated_captions |
|
|
|
|
|
def retrieval_evaluation(model, preprocess, args, recall_k_list=[1, 5, 10], dataset_name=None): |
|
""" |
|
Modified from https://github.com/LAION-AI/CLIP_benchmark/blob/main/clip_benchmark/metrics/zeroshot_retrieval.py |
|
Evaluate the model on the given dataset |
|
|
|
Parameters |
|
---------- |
|
|
|
model: torch.nn,Module |
|
CLIP-like model with `encode_image` and `encode_text` |
|
|
|
dataloader: torch.utils.data.Dataloader |
|
dataloader to use for evaluation |
|
|
|
tokenizer: |
|
text tokenizer, i.e. convert list of strings to torch.Tensor of integers |
|
|
|
device: cpu/cuda |
|
recall_k_list: list of int |
|
recall@k k's to use |
|
|
|
Returns |
|
------- |
|
|
|
dict of retrieval metrics |
|
""" |
|
|
|
if dataset_name == "rsitmd": |
|
dataset = CsvDataset( |
|
input_filename=os.path.join(args.test_dataset_dir, "rsitmd", "rsitmd_test.csv"), |
|
transforms=preprocess, |
|
img_key="filename", |
|
caption_key="title", |
|
sep=",", |
|
images_dir=os.path.join(args.test_dataset_dir, "rsitmd", "images") |
|
) |
|
elif dataset_name == "rsicd": |
|
dataset = CsvDataset( |
|
input_filename=os.path.join(args.test_dataset_dir, "rsicd", "rsicd_test.csv"), |
|
transforms=preprocess, |
|
img_key="filename", |
|
caption_key="title", |
|
sep=",", |
|
images_dir=os.path.join(args.test_dataset_dir, "rsicd", "RSICD_images") |
|
) |
|
|
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=args.batch_size, |
|
num_workers=args.workers, |
|
collate_fn=get_dataset_collate_fn('mscoco_captions') |
|
) |
|
n_batches = len(dataloader) |
|
tokenizer = open_clip.tokenize |
|
|
|
batch_images_emb_list = [] |
|
|
|
batch_texts_emb_list = [] |
|
|
|
texts_image_index = [] |
|
dataloader = dataloader_with_indices(dataloader) |
|
|
|
for batch_images, batch_texts, inds in tqdm.tqdm(dataloader, total=n_batches): |
|
batch_images = batch_images.to(args.device) |
|
|
|
batch_texts_image_index = [ind for ind, texts in zip(inds, batch_texts) for text in texts] |
|
|
|
batch_texts = tokenizer([text for i, texts in enumerate(batch_texts) for text in texts]).to(args.device) |
|
|
|
|
|
with torch.no_grad(): |
|
batch_image_features = model.encode_image(batch_images) |
|
batch_text_features = model.encode_text(batch_texts) |
|
batch_images_emb = F.normalize(batch_image_features, dim=-1) |
|
batch_texts_emb = F.normalize(batch_text_features, dim=-1) |
|
|
|
batch_images_emb_list.append(batch_images_emb.cpu()) |
|
batch_texts_emb_list.append(batch_texts_emb.cpu()) |
|
texts_image_index.extend(batch_texts_image_index) |
|
|
|
batch_size = len(batch_images_emb_list[0]) |
|
|
|
|
|
images_emb = torch.cat(batch_images_emb_list) |
|
texts_emb = torch.cat(batch_texts_emb_list) |
|
|
|
|
|
scores = texts_emb @ images_emb.t() |
|
|
|
|
|
positive_pairs = torch.zeros_like(scores, dtype=bool) |
|
positive_pairs[torch.arange(len(scores)), texts_image_index] = True |
|
metrics = {} |
|
for recall_k in recall_k_list: |
|
''' |
|
Note that recall_at_k computes **actual** recall i.e. nb_true_positive/nb_positives, where the number |
|
of true positives, e.g. for text retrieval, is, for each image, the number of retrieved texts matching that image among the top-k. |
|
Also, the number of positives are the total number of texts matching the image in the dataset, as we have a set of captions |
|
for each image, that number will be greater than 1 for text retrieval. |
|
However, image/text retrieval recall@k, the way it is done in CLIP-like papers, is a bit different. |
|
recall@k, in CLIP-like papers, is, for each image, either 1 or 0. It is 1 if atleast one text matches the image among the top-k. |
|
so we can easily compute that using the actual recall, by checking whether there is at least one true positive, |
|
which would be the case if the recall is greater than 0. One we compute the recal for each image (or text), we average |
|
it over the dataset. |
|
''' |
|
metrics[f"retrieval-image2text-R@{recall_k}-{dataset_name}"] = (batchify(recall_at_k, scores.T, |
|
positive_pairs.T, batch_size, |
|
args.device, |
|
k=recall_k) > 0).float().mean().item() * 100 |
|
|
|
for recall_k in recall_k_list: |
|
metrics[f"retrieval-text2image-R@{recall_k}-{dataset_name}"] = (batchify(recall_at_k, scores, positive_pairs, |
|
batch_size, args.device, |
|
k=recall_k) > 0).float().mean().item() * 100 |
|
|
|
metrics[f"retrieval-mean-recall-{dataset_name}"] = np.mean(list(metrics.values())) |
|
|
|
for key, item in metrics.items(): |
|
metrics[key] = round(float(item), 2) |
|
logging.info(f'{dataset_name} retrieval recall: {metrics}%') |
|
|
|
return metrics |
|
|
|
|
|
class SLM(object): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self): |
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') |
|
self.logger = logging.getLogger() |
|
|
|
|
|
self.rsu_beta = 0.707 |
|
self.rsu_eps = 1e-7 |
|
|
|
self.ras_expand_factor = 1.5 |
|
self.ras_filter_times = 5 |
|
self.ras_scala_beta = 3 |
|
|
|
self.rda_eta = 0.5 |
|
|
|
self.rmi_wsu = 0.4 |
|
self.rmi_was = 0.35 |
|
self.rmi_wda = 0.25 |
|
|
|
|
|
self.visual_ras = False |
|
self.src_addmap_path = None |
|
|
|
|
|
self.all_metrics = self._format_output_dict() |
|
|
|
def _format_output_dict(self, *params): |
|
""" |
|
format output dict |
|
:param params: keys |
|
:return: format dict |
|
""" |
|
len_params = len(params) |
|
if len_params == 0: init_param = [[] for i in range(4)] |
|
elif len_params == 4: init_param = params |
|
else: raise NotImplementedError |
|
|
|
return { |
|
"↑ Rsu [0 ~ 1]": init_param[0], |
|
"↑ Rda [0 ~ 1]": init_param[1], |
|
"↓ Ras [0 ~ 1]": init_param[2], |
|
"↑ Rmi [0 ~ 1]": init_param[3] |
|
} |
|
|
|
def logging_acc(self, metrics_dict, prob_path = None, ave = False): |
|
""" |
|
logging the metrics |
|
:param metrics_dict: dict of metrics |
|
:param prob_path: path |
|
:return: 0 |
|
""" |
|
|
|
if not ave: |
|
self.logger.info("Eval {}".format(prob_path)) |
|
else: |
|
self.logger.info("+++++++++++++++Average++++++++++++++") |
|
|
|
self.logger.info("+++++++ Calc the SLM METRICS +++++++") |
|
for metric, value in metrics_dict.items(): |
|
self.logger.info("++++ {}:{:.4f} ++++".format(metric, value)) |
|
self.logger.info("++++++++++++++++++++++++++++++++++++\n") |
|
|
|
def set_visual_options(self, visual_ras, src_addmap_path): |
|
""" |
|
set visual options |
|
:param visual_ras: flag |
|
:param src_addmap_path: set src addmap path |
|
""" |
|
self.visual_ras = visual_ras |
|
self.src_addmap_path = src_addmap_path |
|
return True |
|
|
|
def read_gray_to_prob(self, probmap_path): |
|
""" |
|
Read the prob maps, and trans to probility |
|
:param probmap_path: probmap routh |
|
:return: probability |
|
""" |
|
gray_image = cv2.imread(probmap_path, cv2.IMREAD_GRAYSCALE) |
|
prob = gray_image / 255.0 |
|
return prob |
|
|
|
def generate_mask_by_points(self, prob, points_list): |
|
""" |
|
Generate mask by regions |
|
:param prob: probability |
|
:param points_list: regions |
|
:return: mask |
|
""" |
|
H, W = prob.shape |
|
|
|
mask = np.zeros((H, W)) |
|
points_list = [np.array(i, np.int32) for i in points_list] |
|
|
|
cv2.fillPoly(mask, points_list, 1) |
|
return mask |
|
|
|
def _get_region_center_radius(self, region_point): |
|
""" |
|
get the region center and radius |
|
:param region_point: regions |
|
:return: mid_x, mid_y, radius |
|
""" |
|
mid_x = int(reduce(lambda x, y: x+y, np.array(region_point)[:, 0]) / len(region_point)) |
|
mid_y = int(reduce(lambda x, y: x+y, np.array(region_point)[:, 1]) / len(region_point)) |
|
radius = int(np.mean([np.linalg.norm(np.array(point) - np.array([mid_x, mid_y])) for point in region_point]) * self.ras_expand_factor) |
|
return mid_x, mid_y, radius |
|
|
|
def _get_prob_center_in_gray(self, prob): |
|
""" |
|
get the top point with the highest probability from the probability map |
|
:param prob: probability |
|
:return: centers |
|
""" |
|
|
|
|
|
gray_img = np.asarray(prob * 255.0, dtype=np.uint8) |
|
|
|
|
|
continuous_area = np.asarray(gray_img > 150, np.uint8) * 255 |
|
|
|
continuous_area = np.uint8(measure.label(continuous_area, connectivity=2)) |
|
|
|
|
|
|
|
for i in range(self.ras_filter_times): |
|
gray_img = cv2.boxFilter(gray_img, ddepth=-1, ksize=(50, 50)) |
|
|
|
|
|
mx = maximum_filter(gray_img, size=1000) |
|
gray_img = np.where(mx == gray_img, gray_img, 0) |
|
|
|
gray_img = np.asarray(gray_img > 0, np.uint8) * 255 |
|
|
|
|
|
|
|
labels = measure.label(gray_img, connectivity=2) |
|
all_region_infos = measure.regionprops(labels) |
|
centers = [[int(i) for i in prop.centroid][::-1] for prop in all_region_infos] |
|
|
|
|
|
v_center = [[c[0], c[1], prob[c[1]][c[0]]] for c in centers] |
|
v_center.sort(key= lambda x: x[2], reverse=True) |
|
centers = list(map(lambda x: x[:2], v_center)) |
|
|
|
|
|
centers = [i for i in centers if prob[i[1]][i[0]] >= 0.5] |
|
|
|
return centers, continuous_area |
|
|
|
def _get_offset_between_real_and_synthetic(self, real_center_radius, prob_centers, bina_img): |
|
""" |
|
calculate true center offset from result center |
|
:param real_center_radius: real_center_radius |
|
:param prob_centers: prob_centers |
|
:return: offsets |
|
""" |
|
|
|
|
|
if len(prob_centers) == 0 : return [real_center_radius[0][2]] |
|
|
|
offsets = [] |
|
for center_radius in real_center_radius: |
|
x, y, r = center_radius |
|
|
|
|
|
dises = list(map(lambda p: np.linalg.norm(np.array([x, y] - np.array(p))), prob_centers)) |
|
|
|
|
|
dises = list(filter(lambda d: d <= r, dises)) |
|
|
|
|
|
offsets.append(np.mean(dises) if len(dises) != 0 else r) |
|
|
|
return offsets |
|
|
|
def _trans_ras_offset_to_scalable_ras(self, offsets, centers_and_radius): |
|
""" |
|
convert distance offset to ras value |
|
:param offsets: offsets |
|
:return: centers_and_radius |
|
""" |
|
|
|
|
|
granular_offet = np.mean([off/v[2] for off, v in zip(offsets, centers_and_radius)]) |
|
|
|
|
|
granular_offet = (np.exp(self.ras_scala_beta * granular_offet) - 1) / (np.exp(self.ras_scala_beta) - 1) |
|
|
|
return granular_offet |
|
|
|
def ras(self, region_lists, prob, visual=True, src_img=None): |
|
""" |
|
calc the matric of ras: makes attention center close to annotation center |
|
:param region_lists: regions |
|
:param prob: probability |
|
:return: ras |
|
""" |
|
|
|
|
|
centers_and_radius = [self._get_region_center_radius(i) for i in region_lists] |
|
|
|
|
|
prob_centers, bina_img = self._get_prob_center_in_gray(prob) |
|
|
|
|
|
offsets = self._get_offset_between_real_and_synthetic(centers_and_radius, prob_centers, bina_img) |
|
|
|
|
|
ras = self._trans_ras_offset_to_scalable_ras(offsets, centers_and_radius) |
|
|
|
|
|
if visual and (src_img != None): |
|
src_img = cv2.imread(src_img) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for c_r in centers_and_radius: |
|
cv2.circle(src_img, (c_r[0], c_r[1]), c_r[2], 2, 3) |
|
|
|
|
|
for idx, point in enumerate(prob_centers): |
|
cv2.circle(src_img, tuple(point), 6*(idx+1), 1, 4) |
|
cv2.putText(src_img, str(idx+1), tuple(point), cv2.FONT_HERSHEY_COMPLEX, 6, (0, 0, 0), 25) |
|
|
|
cv2.imwrite("./img_circle.jpg", src_img) |
|
|
|
|
|
|
|
return ras |
|
|
|
def rsu(self, prob, mask): |
|
""" |
|
calc the salient area proportion |
|
:param prob: probability |
|
:param mask: mask |
|
:return: rsu |
|
""" |
|
|
|
all_mask_value = np.sum(np.multiply(prob, mask)) |
|
all_value = np.sum(prob) |
|
H, W = np.shape(mask) |
|
all_mask = np.sum(mask) |
|
|
|
left_frac = all_mask_value / (all_value - all_mask_value + self.rsu_eps) |
|
|
|
right_frac = (H * W - all_mask) / all_mask |
|
|
|
rsu = -np.exp(-1 * self.rsu_beta * left_frac * right_frac) + 1 |
|
|
|
return rsu |
|
|
|
def rda(self, region_lists, prob): |
|
""" |
|
calc the matric of rda: makes attention center focus on one point |
|
:param region_lists: regions |
|
:param prob: probability |
|
:return: rda |
|
""" |
|
|
|
|
|
centers_and_radius = [self._get_region_center_radius(i) for i in region_lists] |
|
|
|
|
|
prob_centers, bina_img = self._get_prob_center_in_gray(prob) |
|
|
|
|
|
rda = [] |
|
for c_r in centers_and_radius: |
|
x, y, r = c_r |
|
|
|
|
|
backup_points = list(filter(lambda p: np.linalg.norm(np.array([x, y] - np.array(p))) <= r, prob_centers)) |
|
|
|
|
|
len_backup_points = len(backup_points) |
|
if len_backup_points <= 1 : |
|
rda.append(float(len_backup_points)) |
|
continue |
|
|
|
|
|
centers_attention = np.average(backup_points, axis=0) |
|
dises = list(map(lambda p: np.linalg.norm(np.array(centers_attention - np.array(p))), backup_points)) |
|
meas_dis = np.mean(dises) / r |
|
|
|
rda_single = 0.5 * (1 - meas_dis) + np.exp(- self.rda_eta * (len_backup_points + 2)) |
|
|
|
rda.append(rda_single) |
|
|
|
return np.mean(rda) |
|
|
|
def rmi(self, rsu, rda, ras): |
|
""" |
|
calculate the mean indicator |
|
:param rsu: rsu |
|
:param rda: rda |
|
:param ras: ras |
|
:return: rmi |
|
""" |
|
return self.rmi_wsu * rsu + self.rmi_was * (1 - ras) + self.rmi_wda * rda |
|
|
|
def evaluate(self, prob_path, region_list): |
|
""" |
|
evaluate the slm task |
|
:param probmap_path: probability map path |
|
:param region_list: region points |
|
:return: slm metrics |
|
""" |
|
|
|
prob = self.read_gray_to_prob(prob_path) |
|
|
|
|
|
mask = self.generate_mask_by_points(prob, region_list) |
|
|
|
|
|
|
|
rsu = self.rsu(prob, mask) |
|
|
|
|
|
ras = self.ras(region_list, prob, visual=self.visual_ras, src_img=self.src_addmap_path) |
|
|
|
|
|
rda = self.rda(region_list, prob) |
|
|
|
|
|
rmi = self.rmi(rsu, rda, ras) |
|
|
|
|
|
metrics = self._format_output_dict(rsu, rda, ras, rmi) |
|
|
|
|
|
return metrics |
|
|
|
def append_metric(self, metric): |
|
""" |
|
append metric to calc ave indicator |
|
:param metric: sort metrics |
|
""" |
|
for k in metric.keys(): |
|
self.all_metrics[k].append(metric[k]) |
|
|
|
def get_the_mean_metric(self): |
|
""" |
|
get the mean metric |
|
""" |
|
mean_metric = {} |
|
for k in self.all_metrics: |
|
mean_metric[k] = np.mean(self.all_metrics[k]) |
|
|
|
self.logging_acc(mean_metric, ave=True) |
|
return mean_metric |
|
|
|
|
|
def semantic_localization_evaluation(model, selo_dataset, preprocess, args): |
|
assert selo_dataset == 'AIR-SLT' |
|
|
|
def collect_fn_selo(batch): |
|
assert len(batch) == 1 |
|
source_img, subimages, text, points, subimg_name_list = batch[0] |
|
return source_img, subimages, text, points, subimg_name_list |
|
|
|
dataset = get_selo_dataset( |
|
root=args.test_dataset_dir, transform=preprocess, identifier=None |
|
) |
|
|
|
dataloader = torch.utils.data.DataLoader( |
|
dataset, |
|
batch_size=1, |
|
shuffle=False, |
|
num_workers=0, |
|
collate_fn=collect_fn_selo |
|
) |
|
tokenizer = open_clip.tokenize |
|
logger = dataset.logger |
|
slm_metric = SLM() |
|
|
|
with torch.no_grad(): |
|
for idx, sample in tqdm.tqdm(enumerate(dataloader)): |
|
source_img, subimages, text, points, subimg_name_list = sample |
|
subimages = subimages.to(args.device) |
|
text = tokenizer(text).to(args.device) |
|
text_features = model.encode_text(text) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
|
|
sim_results = [] |
|
for subimage in subimages: |
|
subimage = subimage.unsqueeze(0) |
|
sub_img_feat = model.encode_image(subimage) |
|
sub_img_feat /= sub_img_feat.norm(dim=-1, keepdim=True) |
|
similarity = (sub_img_feat * text_features).sum().detach().cpu().numpy() |
|
sim_results.append(similarity) |
|
|
|
|
|
img_row = np.shape(source_img)[0] |
|
img_col = np.shape(source_img)[1] |
|
|
|
|
|
heat_map = np.zeros([img_row, img_col], dtype=float) |
|
heat_num = np.zeros([img_row, img_col], dtype=float) |
|
for idx, file in enumerate(subimg_name_list): |
|
r_start, r_end, c_start, c_end = file.replace(".jpg", "").split("_") |
|
heat_map[int(r_start):int(r_end), int(c_start):int(c_end)] += sim_results[idx] |
|
heat_num[int(r_start):int(r_end), int(c_start):int(c_end)] += 1 |
|
|
|
for i in range(np.shape(heat_map)[0]): |
|
for j in range(np.shape(heat_map)[1]): |
|
heat_map[i, j] = heat_map[i, j] / heat_num[i, j] |
|
|
|
|
|
|
|
adaptive = np.asarray(heat_map) |
|
adaptive = adaptive - np.min(adaptive) |
|
probmap = adaptive / np.max(adaptive) |
|
|
|
probmap = np.uint8(255 * probmap) |
|
probmap = cv2.medianBlur(probmap, 251) |
|
heatmap = cv2.applyColorMap(probmap, cv2.COLORMAP_JET) |
|
img_add = cv2.addWeighted(source_img, 0.7, heatmap, 0.3, 0) |
|
|
|
probmap_path = os.path.join(dataset.cache_path, "probmap_{}.jpg".format(idx)) |
|
heatmap_path = os.path.join(dataset.cache_path, "heatmap_{}.jpg".format(idx)) |
|
addmap_path = os.path.join(dataset.cache_path, "addmap_{}.jpg".format(idx)) |
|
|
|
|
|
|
|
|
|
|
|
cv2.imwrite(probmap_path, probmap) |
|
cv2.imwrite(heatmap_path, heatmap) |
|
cv2.imwrite(addmap_path, img_add) |
|
|
|
|
|
metrics = slm_metric.evaluate(probmap_path, region_list=points) |
|
slm_metric.append_metric(metrics) |
|
|
|
mean_metric = slm_metric.get_the_mean_metric() |
|
|
|
results = {} |
|
logging.info(f'{selo_dataset} selo metrics: {mean_metric}') |
|
|
|
for key, item in mean_metric.items(): |
|
results[key] = float(item) |
|
|
|
return results |
|
|
|
|
|
class AIR_SLT(Dataset): |
|
|
|
def __init__(self, root, subimage_transform, identifier): |
|
super().__init__() |
|
self.json_path = os.path.join(root, "annotations", "anno.json") |
|
|
|
self.cache_path = os.path.join(root, "selo_cache") |
|
os.makedirs(self.cache_path, exist_ok=True) |
|
with open(self.json_path, 'r', encoding='utf8') as fp: |
|
self.json_data = json.load(fp) |
|
self.img_root = os.path.join(root, "imgs") |
|
self.subimage_transform = subimage_transform |
|
self.logger = get_logger(os.path.join(self.cache_path, 'log.txt')) |
|
self.step = "256_512_768" |
|
|
|
def __len__(self): |
|
return len(self.json_data) |
|
|
|
def __getitem__(self, index): |
|
item = self.json_data[index] |
|
img_name = item['jpg_name'] |
|
text = item['caption'] |
|
points = item['points'] |
|
steps = [int(step) for step in self.step.split("_")] |
|
img_path = os.path.join(self.img_root, img_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.split_image(img_path, steps) |
|
with torch.no_grad(): |
|
subimages_dir = os.path.join(self.cache_path, os.path.basename(img_path).split(".")[0]) + '_subimages' |
|
subimages = os.listdir(subimages_dir) |
|
|
|
img = cv2.imread(img_path) |
|
subimg_list = [] |
|
subimg_name_list = [] |
|
for subimage_name in subimages: |
|
subimage_path = os.path.join(subimages_dir, subimage_name) |
|
subimg = Image.open(subimage_path) |
|
subimg = self.subimage_transform(subimg).unsqueeze(0) |
|
subimg_list.append(subimg) |
|
subimg_name_list.append(subimage_name) |
|
subimgs = torch.vstack(subimg_list) |
|
return img, subimgs, [text], points, subimg_name_list |
|
|
|
def split_image(self, img_path, steps): |
|
subimage_files_dir = os.path.join(self.cache_path, os.path.basename(img_path).split(".")[0]) |
|
|
|
|
|
subimages_dir = subimage_files_dir + '_subimages' |
|
if os.path.exists(subimages_dir): |
|
delete_dire(subimages_dir) |
|
else: |
|
os.makedirs(subimages_dir) |
|
|
|
|
|
source_img = cv2.imread(img_path) |
|
img_weight = np.shape(source_img)[0] |
|
img_height = np.shape(source_img)[1] |
|
|
|
|
|
for step in steps: |
|
|
|
for gap in [step, 0.5 * step]: |
|
gap = int(gap) |
|
|
|
|
|
for h in range(0 + (step - gap), img_height, step): |
|
h_start, h_end = h, h + step |
|
|
|
if h_end >= img_height: |
|
h_start, h_end = img_height - step, img_height |
|
|
|
for w in range(0 + (step - gap), img_weight, step): |
|
w_start, w_end = w, w + step |
|
|
|
if w_end >= img_weight: |
|
w_start, w_end = img_weight - step, img_weight |
|
|
|
cut_img_name = str(w_start) + "_" + str(w_end) + "_" + str(h_start) + "_" + str(h_end) + ".jpg" |
|
cut_img = source_img[w_start:w_end, h_start:h_end] |
|
cut_img = cv2.resize(cut_img, (256, 256), interpolation=cv2.INTER_CUBIC) |
|
|
|
cv2.imwrite(os.path.join(subimages_dir, cut_img_name), cut_img) |
|
|
|
|
|
|
|
|
|
def delete_dire(dire): |
|
dir_list = [] |
|
for root, dirs, files in os.walk(dire): |
|
for afile in files: |
|
os.remove(os.path.join(root, afile)) |
|
for adir in dirs: |
|
dir_list.append(os.path.join(root, adir)) |
|
for bdir in dir_list: |
|
os.rmdir(bdir) |
|
|
|
|
|
|
|
def get_logger(save_path=None): |
|
logger = logging.getLogger() |
|
logger.setLevel(logging.INFO) |
|
formatter = logging.Formatter('%(asctime)s %(message)s') |
|
|
|
|
|
sh = logging.StreamHandler() |
|
sh.setFormatter(formatter) |
|
logger.addHandler(sh) |
|
|
|
|
|
if save_path != None: |
|
fh = logging.FileHandler(save_path, encoding='utf8') |
|
fh.setFormatter(formatter) |
|
logger.addHandler(fh) |
|
|
|
return logger |
|
|
|
|
|
def get_selo_dataset(root, transform, identifier): |
|
|
|
AIR_SLT_root = os.path.join(root, "AIR-SLT") |
|
dataset = AIR_SLT( |
|
root=AIR_SLT_root, |
|
subimage_transform=transform, |
|
identifier=identifier |
|
) |
|
|
|
return dataset |