Zoyd's picture
Upload folder using huggingface_hub
c2ed52c verified
metadata
license: other
tags:
  - merge
  - mergekit
  - lazymergekit
base_model:
  - NousResearch/Meta-Llama-3-8B-Instruct
  - NousResearch/Meta-Llama-3-8B-Instruct
  - NousResearch/Meta-Llama-3-8B-Instruct
  - NousResearch/Meta-Llama-3-8B-Instruct
  - NousResearch/Meta-Llama-3-8B-Instruct

Exllamav2 quant (exl2 / 3.5 bpw) made with ExLlamaV2 v0.0.21

Other EXL2 quants:

Quant Model Size lm_head
2.2
4176 MB
6
2.5
4519 MB
6
3.0
5143 MB
6
3.5
5766 MB
6
3.75
6077 MB
6
4.0
6391 MB
6
4.25
6703 MB
6
5.0
7637 MB
6
6.0
8992 MB
8
6.5
9616 MB
8
8.0
11473 MB
8

Meta-Llama-3-12B-Instruct

Meta-Llama-3-12B-Instruct is a merge of the following models using LazyMergekit:

πŸ† Evaluation

Model AGIEval GPT4All TruthfulQA Bigbench Average
Meta-Llama-3-12B-Instruct 41.7 67.71 52.75 40.58 50.69
Meta-Llama-3-12B 29.46 68.01 41.02 35.57 43.52

🧩 Configuration

slices:
  - sources:
    - model: NousResearch/Meta-Llama-3-8B-Instruct
      layer_range: [0,9]
  - sources:
    - model: NousResearch/Meta-Llama-3-8B-Instruct
      layer_range: [5,14]
  - sources:
    - model: NousResearch/Meta-Llama-3-8B-Instruct
      layer_range: [10,19]
  - sources:
    - model: NousResearch/Meta-Llama-3-8B-Instruct
      layer_range: [15,24]
  - sources:
    - model: NousResearch/Meta-Llama-3-8B-Instruct
      layer_range: [20,32]
merge_method: passthrough
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Meta-Llama-3-12B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])