metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_irony_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.6978724526113207
presentation_irony_42
This model is a fine-tuned version of distilbert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:
- Loss: 1.5092
- F1: 0.6979
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.9499220651719123e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.4779 | 1.0 | 716 | 0.5890 | 0.6852 |
0.4553 | 2.0 | 1432 | 0.9082 | 0.6635 |
1.268 | 3.0 | 2148 | 1.3061 | 0.6818 |
0.0035 | 4.0 | 2864 | 1.5092 | 0.6979 |
Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3