aaa12963337's picture
End of training
e4f2079
metadata
license: apache-2.0
base_model: WinKawaks/vit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: msi-vit-pretrain_1218
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5866295264623955

msi-vit-pretrain_1218

This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7293
  • Accuracy: 0.5866

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1183 1.0 781 1.3771 0.6737
0.0548 2.0 1562 2.6272 0.5738
0.014 3.0 2343 2.7293 0.5866

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.15.0
  • Tokenizers 0.15.0