distilgpt2-sd / README.md
aabidk's picture
Update README.md
283c6be
|
raw
history blame
4.2 kB
metadata
license: apache-2.0
base_model: distilgpt2
tags:
  - generated_from_trainer
model-index:
  - name: distilgpt2-sd
    results: []
datasets:
  - Gustavosta/Stable-Diffusion-Prompts

distilgpt2-sd

This model is a fine-tuned version of distilgpt2 on Stable-Diffusion-Prompt dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
3.36 0.05 500 2.8209
2.8086 0.11 1000 2.5757
2.6126 0.16 1500 2.4096
2.4771 0.22 2000 2.3027
2.3986 0.27 2500 2.2076
2.3148 0.33 3000 2.1547
2.237 0.38 3500 2.0825
2.1731 0.43 4000 2.0334
2.1256 0.49 4500 1.9806
2.081 0.54 5000 1.9345
2.0677 0.6 5500 1.9053
1.9794 0.65 6000 1.8691
2.0072 0.71 6500 1.8429
1.9597 0.76 7000 1.8061
1.9318 0.82 7500 1.7857
1.9283 0.87 8000 1.7610
1.8959 0.92 8500 1.7378
1.8626 0.98 9000 1.7185
1.8126 1.03 9500 1.7040
1.7789 1.09 10000 1.6855
1.7794 1.14 10500 1.6756
1.7284 1.2 11000 1.6529
1.7478 1.25 11500 1.6384
1.7065 1.3 12000 1.6321
1.7092 1.36 12500 1.6133
1.6897 1.41 13000 1.6146
1.6902 1.47 13500 1.5952
1.6888 1.52 14000 1.5792
1.6862 1.58 14500 1.5730
1.6458 1.63 15000 1.5661
1.6594 1.68 15500 1.5537
1.6486 1.74 16000 1.5484
1.6556 1.79 16500 1.5360
1.6187 1.85 17000 1.5264
1.6377 1.9 17500 1.5223
1.6129 1.96 18000 1.5180
1.6025 2.01 18500 1.5030
1.5697 2.06 19000 1.4991
1.5616 2.12 19500 1.5012
1.558 2.17 20000 1.4984
1.549 2.23 20500 1.4809
1.5048 2.28 21000 1.4827
1.5207 2.34 21500 1.4740
1.5097 2.39 22000 1.4699
1.541 2.45 22500 1.4701
1.5355 2.5 23000 1.4637
1.5318 2.55 23500 1.4609
1.5352 2.61 24000 1.4580
1.5202 2.66 24500 1.4566
1.5073 2.72 25000 1.4547
1.5462 2.77 25500 1.4520
1.5347 2.83 26000 1.4491
1.52 2.88 26500 1.4488
1.5154 2.93 27000 1.4475
1.4855 2.99 27500 1.4481

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3