aadel4's picture
Update README.md
95507c2
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: openai/whisper-medium-en
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: myst-test
          type: asr
          config: en
          split: test
        metrics:
          - type: wer
            value: 8.85
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: cslu_scripted
          type: asr
          config: en
          split: test
        metrics:
          - type: wer
            value: 2.38
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: cslu_spontaneous
          type: asr
          config: en
          split: test
        metrics:
          - type: wer
            value: 16.53
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: librispeech
          type: asr
          config: en
          split: testclean
        metrics:
          - type: wer
            value: 3.52
            name: WER

openai/whisper-medium-en

This model is a fine-tuned version of openai/whisper-medium-en on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.22987066209316254
  • Wer: 7.945455976651671`

Training and evaluation data

  • Training data: Myst Train (125 hours) + CSLU Scripted train (35 hours)
  • Evaluation data: Myst Dev (20.9 hours) + CSLU Scripted Dev(4.8)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • converged_after: 1000