metadata
license: apache-2.0
metrics:
- wer
model-index:
- name: openai/whisper-small-en
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: myst-test
type: asr
config: en
split: test
metrics:
- type: wer
value: 9.11
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: cslu_scripted
type: asr
config: en
split: test
metrics:
- type: wer
value: 33.85
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: cslu_spontaneous
type: asr
config: en
split: test
metrics:
- type: wer
value: 28.47
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: librispeech
type: asr
config: en
split: testclean
metrics:
- type: wer
value: 4.18
name: WER
openai/whisper-small-en
This model is a fine-tuned version of openai/whisper-small-en on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.26971688866615295
- Wer: 8.508066331024994
Training and evaluation data
- Training data: Myst Train (125 hours)
- Evaluation data: Myst Dev (20.9 hours)
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- converged_after: 1000