Edit model card

German_Semantic_STS_V2

Note: Check out my new, updated models: German_Semantic_V3 and V3b!

This model creates german embeddings for semantic use cases.

This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Special thanks to deepset for providing the model gBERT-large and also to Philip May for the Translation of the dataset and chats about the topic.

Model score after fine-tuning scores best, compared to these models:

Model Name Spearman
xlm-r-distilroberta-base-paraphrase-v1 0.8079
xlm-r-100langs-bert-base-nli-stsb-mean-tokens 0.7877
xlm-r-bert-base-nli-stsb-mean-tokens 0.7877
roberta-large-nli-stsb-mean-tokens 0.6371
T-Systems-onsite/
german-roberta-sentence-transformer-v2
0.8529
paraphrase-multilingual-mpnet-base-v2 0.8355
T-Systems-onsite/
cross-en-de-roberta-sentence-transformer
0.8550
aari1995/German_Semantic_STS_V2 0.8626

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('aari1995/German_Semantic_STS_V2')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('aari1995/German_Semantic_STS_V2')
model = AutoModel.from_pretrained('aari1995/German_Semantic_STS_V2')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 1438 with parameters:

{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss with parameters:

{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}

Parameters of the fit()-Method:

{
    "epochs": 4,
    "evaluation_steps": 500,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 5e-06
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 576,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

The base model is trained by deepset. The dataset was published / translated by Philip May. The model was fine-tuned by Aaron Chibb.

Downloads last month
24,864
Safetensors
Model size
336M params
Tensor type
I64
·
F32
·
Inference API

Dataset used to train aari1995/German_Semantic_STS_V2

Spaces using aari1995/German_Semantic_STS_V2 4

Collection including aari1995/German_Semantic_STS_V2

Evaluation results