|
--- |
|
license: cc-by-sa-3.0 |
|
language: |
|
- en |
|
tags: |
|
- AWQ |
|
inference: false |
|
--- |
|
|
|
# VMware/open-llama-7B-v2-open-instruct (4-bit 128g AWQ Quantized) |
|
Instruction-tuned version of the fully trained Open LLama 7B v2 model. The model is open for <b>COMMERCIAL USE</b>. <br> |
|
|
|
This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq). |
|
|
|
## Model Date |
|
|
|
July 12, 2023 |
|
|
|
## Model License |
|
|
|
Please refer to original OpenLLaMa model license ([link](https://huggingface.co/VMware/open-llama-7b-v2-open-instruct)). |
|
|
|
Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)). |
|
|
|
## CUDA Version |
|
|
|
This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of `8.0` or higher. |
|
|
|
For Docker users, the `nvcr.io/nvidia/pytorch:23.06-py3` image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work. |
|
|
|
## How to Use |
|
|
|
```bash |
|
git clone https://github.com/mit-han-lab/llm-awq \ |
|
&& cd llm-awq \ |
|
&& git checkout ce4a6bb1c238c014a06672cb74f6865573494d66 \ |
|
&& pip install -e . \ |
|
&& cd awq/kernels \ |
|
&& python setup.py install |
|
``` |
|
|
|
```python |
|
import time |
|
import torch |
|
from awq.quantize.quantizer import real_quantize_model_weight |
|
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextStreamer |
|
from accelerate import init_empty_weights, load_checkpoint_and_dispatch |
|
from huggingface_hub import snapshot_download |
|
|
|
model_name = "abhinavkulkarni/VMware-open-llama-7b-v2-open-instruct" |
|
|
|
# Config |
|
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
# Tokenizer |
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True) |
|
except: |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code=True) |
|
streamer = TextStreamer(tokenizer, skip_special_tokens=True) |
|
|
|
# Model |
|
w_bit = 4 |
|
q_config = { |
|
"zero_point": True, |
|
"q_group_size": 128, |
|
} |
|
|
|
load_quant = snapshot_download(model_name) |
|
|
|
with init_empty_weights(): |
|
model = AutoModelForCausalLM.from_config(config=config, |
|
torch_dtype=torch.float16, trust_remote_code=True) |
|
|
|
real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True) |
|
model.tie_weights() |
|
|
|
model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced") |
|
|
|
# Inference |
|
prompt = f'''What is the difference between nuclear fusion and fission? |
|
###Response:''' |
|
|
|
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda() |
|
output = model.generate( |
|
inputs=input_ids, |
|
temperature=0.7, |
|
max_new_tokens=512, |
|
top_p=0.15, |
|
top_k=0, |
|
repetition_penalty=1.1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
streamer=streamer) |
|
``` |
|
|
|
## Evaluation |
|
|
|
This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness). |
|
|
|
[Open-LLaMA-7B-v2-Instruct](https://huggingface.co/VMware/open-llama-7b-v2-open-instruct) |
|
|
|
| Task |Version| Metric | Value | |Stderr| |
|
|--------|------:|---------------|------:|---|------| |
|
|wikitext| 1|word_perplexity|16.6822| | | |
|
| | |byte_perplexity| 1.6927| | | |
|
| | |bits_per_byte | 0.7593| | | |
|
|
|
[Open-LLaMA-7B-v2-Instruct (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/VMware-open-llama-7b-v2-open-instruct-w4-g128-awq) |
|
|
|
| Task |Version| Metric | Value | |Stderr| |
|
|--------|------:|---------------|------:|---|------| |
|
|wikitext| 1|word_perplexity|17.1546| | | |
|
| | |byte_perplexity| 1.7015| | | |
|
| | |bits_per_byte | 0.7668| | | |
|
|
|
## Acknowledgements |
|
|
|
If you found OpenLLaMA useful in your research or applications, please cite using the following BibTeX: |
|
``` |
|
@software{openlm2023openllama, |
|
author = {Geng, Xinyang and Liu, Hao}, |
|
title = {OpenLLaMA: An Open Reproduction of LLaMA}, |
|
month = May, |
|
year = 2023, |
|
url = {https://github.com/openlm-research/open_llama} |
|
} |
|
``` |
|
``` |
|
@software{together2023redpajama, |
|
author = {Together Computer}, |
|
title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset}, |
|
month = April, |
|
year = 2023, |
|
url = {https://github.com/togethercomputer/RedPajama-Data} |
|
} |
|
``` |
|
``` |
|
@article{touvron2023llama, |
|
title={Llama: Open and efficient foundation language models}, |
|
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and others}, |
|
journal={arXiv preprint arXiv:2302.13971}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper: |
|
|
|
``` |
|
@article{lin2023awq, |
|
title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration}, |
|
author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song}, |
|
journal={arXiv}, |
|
year={2023} |
|
} |
|
``` |
|
|