abhishtagatya's picture
Update README.md
801323e verified
|
raw
history blame
2.45 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
  - audio-classification
  - deepfake
  - audio-spoof
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-960h-itw-deepfake
    results: []

wav2vec2-base-960h-itw-deepfake

This model is a fine-tuned version of facebook/wav2vec2-base-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0917
  • Accuracy: 0.9835
  • FAR: 0.0068
  • FRR: 0.0330
  • EER: 0.0199

Model description

Quick Use

  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

  config = AutoConfig.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake")
  feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake")

  model = Wav2Vec2ForSequenceClassification.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake", config=config).to(device)

  # Your Logic Here

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy FAR FRR EER
0.6363 0.39 2500 0.4678 0.8652 0.0178 0.3326 0.1752
0.2896 0.79 5000 0.1145 0.9744 0.0170 0.0402 0.0286
0.1554 1.18 7500 0.1024 0.9797 0.0100 0.0377 0.0238
0.1327 1.57 10000 0.0945 0.9825 0.0070 0.0351 0.0211
0.13 1.97 12500 0.0917 0.9835 0.0068 0.0330 0.0199

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.1