distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: {'accuracy': 1.0}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.2543 | {'accuracy': 0.92} |
0.3753 | 2.0 | 500 | 0.1290 | {'accuracy': 0.965} |
0.3753 | 3.0 | 750 | 0.0939 | {'accuracy': 0.965} |
0.1512 | 4.0 | 1000 | 0.0277 | {'accuracy': 0.995} |
0.1512 | 5.0 | 1250 | 0.0014 | {'accuracy': 1.0} |
0.047 | 6.0 | 1500 | 0.0002 | {'accuracy': 1.0} |
0.047 | 7.0 | 1750 | 0.0001 | {'accuracy': 1.0} |
0.0041 | 8.0 | 2000 | 0.0001 | {'accuracy': 1.0} |
0.0041 | 9.0 | 2250 | 0.0000 | {'accuracy': 1.0} |
0.0031 | 10.0 | 2500 | 0.0000 | {'accuracy': 1.0} |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Model tree for adhammai/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased