Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Accuracy: {'accuracy': 1.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.2543 {'accuracy': 0.92}
0.3753 2.0 500 0.1290 {'accuracy': 0.965}
0.3753 3.0 750 0.0939 {'accuracy': 0.965}
0.1512 4.0 1000 0.0277 {'accuracy': 0.995}
0.1512 5.0 1250 0.0014 {'accuracy': 1.0}
0.047 6.0 1500 0.0002 {'accuracy': 1.0}
0.047 7.0 1750 0.0001 {'accuracy': 1.0}
0.0041 8.0 2000 0.0001 {'accuracy': 1.0}
0.0041 9.0 2250 0.0000 {'accuracy': 1.0}
0.0031 10.0 2500 0.0000 {'accuracy': 1.0}

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for adhammai/distilbert-base-uncased-lora-text-classification

Adapter
(197)
this model