|
--- |
|
language: hi |
|
|
|
|
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
license: mit |
|
model-index: |
|
- name: Wav2Vec2 Hindi Model by Aditi sharma |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice hi |
|
type: common_voice |
|
args: hi |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 33.17 |
|
--- |
|
|
|
## Dataset |
|
|
|
This model was trained on 4200 hours of Hindi Labelled Data. The labelled data is not present in public domain as of now. |
|
|
|
|
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import soundfile as sf |
|
import torch |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import argparse |
|
|
|
def parse_transcription(wav_file): |
|
# load pretrained model |
|
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") |
|
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") |
|
|
|
# load audio |
|
audio_input, sample_rate = sf.read(wav_file) |
|
|
|
# pad input values and return pt tensor |
|
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values |
|
|
|
# INFERENCE |
|
# retrieve logits & take argmax |
|
logits = model(input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
# transcribe |
|
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) |
|
print(transcription) |
|
|
|
``` |
|
|
|
|
|
## Evaluation |
|
The model can be evaluated as follows on the hindi test data of Common Voice. |
|
|
|
```python |
|
|
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
test_dataset = load_dataset("common_voice", "hi", split="test") |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") |
|
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") |
|
model.to("cuda") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
|
|
``` |
|
|
|
**Test Result**: 33.17 % |
|
|
|
## Credits |
|
Thanks to Deepmindz Innovations for making this possible. |