Edit model card

SYN_300524_epoch_5

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3372
  • Accuracy: 0.98
  • Precision: 0.9803
  • Recall: 0.98
  • F1: 0.9800
  • Ratio: 0.488

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 47
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 1
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
0.3174 0.0533 10 0.3307 0.984 0.9840 0.984 0.9840 0.496
0.3202 0.1067 20 0.3258 0.986 0.9861 0.986 0.9860 0.494
0.3016 0.16 30 0.3282 0.986 0.9860 0.986 0.9860 0.504
0.3291 0.2133 40 0.3495 0.977 0.9774 0.977 0.9770 0.485
0.2942 0.2667 50 0.3602 0.973 0.9738 0.973 0.9730 0.479
0.3121 0.32 60 0.3586 0.973 0.9731 0.973 0.9730 0.493
0.3226 0.3733 70 0.3736 0.968 0.9681 0.968 0.9680 0.508
0.3226 0.4267 80 0.3515 0.979 0.9791 0.979 0.9790 0.493
0.3265 0.48 90 0.3697 0.97 0.9706 0.97 0.9700 0.482
0.3424 0.5333 100 0.3650 0.971 0.9717 0.971 0.9710 0.481
0.3348 0.5867 110 0.3502 0.976 0.9760 0.976 0.9760 0.496
0.3393 0.64 120 0.3441 0.978 0.9780 0.978 0.9780 0.496
0.3421 0.6933 130 0.3397 0.979 0.9791 0.979 0.9790 0.493
0.3319 0.7467 140 0.3412 0.979 0.9791 0.979 0.9790 0.493
0.3554 0.8 150 0.3416 0.977 0.9772 0.977 0.9770 0.489
0.3829 0.8533 160 0.3428 0.978 0.9785 0.978 0.9780 0.484
0.3631 0.9067 170 0.3396 0.979 0.9793 0.979 0.9790 0.487
0.3362 0.96 180 0.3376 0.98 0.9803 0.98 0.9800 0.488

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/te-zsc-synthetic

Finetuned
(30)
this model