bert-base-uncased-gpqa
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3847
- Accuracy: 0.8939
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 321
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 13 | 1.3835 | 0.2525 |
No log | 2.0 | 26 | 1.3694 | 0.3838 |
No log | 3.0 | 39 | 1.3625 | 0.3838 |
No log | 4.0 | 52 | 1.3641 | 0.3485 |
No log | 5.0 | 65 | 1.3295 | 0.5404 |
No log | 6.0 | 78 | 1.3407 | 0.4949 |
No log | 7.0 | 91 | 1.2322 | 0.6162 |
No log | 8.0 | 104 | 1.1000 | 0.5758 |
No log | 9.0 | 117 | 1.1184 | 0.6717 |
No log | 10.0 | 130 | 0.8604 | 0.7525 |
No log | 11.0 | 143 | 0.7279 | 0.7727 |
No log | 12.0 | 156 | 0.6254 | 0.7929 |
No log | 13.0 | 169 | 0.5025 | 0.8636 |
No log | 14.0 | 182 | 0.8694 | 0.7071 |
No log | 15.0 | 195 | 0.4373 | 0.8535 |
No log | 16.0 | 208 | 0.4071 | 0.9141 |
No log | 17.0 | 221 | 0.6762 | 0.8131 |
No log | 18.0 | 234 | 0.6295 | 0.8333 |
No log | 19.0 | 247 | 0.3242 | 0.8687 |
No log | 20.0 | 260 | 0.3847 | 0.8939 |
Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 0
Inference API (serverless) does not yet support transformers models for this pipeline type.
Model tree for afaji/bert-base-uncased-gpqa
Base model
google-bert/bert-base-uncased