Edit model card

bert-base-uncased-gpqa

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3847
  • Accuracy: 0.8939

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 321
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 13 1.3835 0.2525
No log 2.0 26 1.3694 0.3838
No log 3.0 39 1.3625 0.3838
No log 4.0 52 1.3641 0.3485
No log 5.0 65 1.3295 0.5404
No log 6.0 78 1.3407 0.4949
No log 7.0 91 1.2322 0.6162
No log 8.0 104 1.1000 0.5758
No log 9.0 117 1.1184 0.6717
No log 10.0 130 0.8604 0.7525
No log 11.0 143 0.7279 0.7727
No log 12.0 156 0.6254 0.7929
No log 13.0 169 0.5025 0.8636
No log 14.0 182 0.8694 0.7071
No log 15.0 195 0.4373 0.8535
No log 16.0 208 0.4071 0.9141
No log 17.0 221 0.6762 0.8131
No log 18.0 234 0.6295 0.8333
No log 19.0 247 0.3242 0.8687
No log 20.0 260 0.3847 0.8939

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
0
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for afaji/bert-base-uncased-gpqa

Finetuned
(1902)
this model