bert-base-uncased-medmcqa-distill-of-bert-base-uncased-gpqa
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 10.1269
- Accuracy: 0.5657
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 321
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 63 | 10.5322 | 0.2929 |
No log | 2.0 | 126 | 10.2377 | 0.3283 |
No log | 3.0 | 189 | 11.0437 | 0.4141 |
No log | 4.0 | 252 | 8.4998 | 0.3535 |
No log | 5.0 | 315 | 9.0941 | 0.3737 |
No log | 6.0 | 378 | 9.5258 | 0.3889 |
No log | 7.0 | 441 | 9.1010 | 0.4444 |
1.9584 | 8.0 | 504 | 8.6866 | 0.3434 |
1.9584 | 9.0 | 567 | 9.2581 | 0.3939 |
1.9584 | 10.0 | 630 | 9.2968 | 0.3687 |
1.9584 | 11.0 | 693 | 10.2154 | 0.3838 |
1.9584 | 12.0 | 756 | 10.1269 | 0.5657 |
1.9584 | 13.0 | 819 | 9.4519 | 0.3889 |
1.9584 | 14.0 | 882 | 9.7303 | 0.3737 |
1.9584 | 15.0 | 945 | 9.8894 | 0.3586 |
2.7625 | 16.0 | 1008 | 9.8269 | 0.3283 |
2.7625 | 17.0 | 1071 | 9.7131 | 0.3333 |
2.7625 | 18.0 | 1134 | 9.7690 | 0.3485 |
2.7625 | 19.0 | 1197 | 9.7724 | 0.3333 |
2.7625 | 20.0 | 1260 | 9.8628 | 0.4848 |
Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0
- Downloads last month
- 0
Inference API (serverless) does not yet support transformers models for this pipeline type.
Model tree for afaji/bert-base-uncased-medmcqa-distill-of-bert-base-uncased-gpqa
Base model
google-bert/bert-base-uncased