Edit model card

bert-base-uncased-medmcqa-distill-of-bert-base-uncased-gpqa

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 10.1269
  • Accuracy: 0.5657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 321
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 63 10.5322 0.2929
No log 2.0 126 10.2377 0.3283
No log 3.0 189 11.0437 0.4141
No log 4.0 252 8.4998 0.3535
No log 5.0 315 9.0941 0.3737
No log 6.0 378 9.5258 0.3889
No log 7.0 441 9.1010 0.4444
1.9584 8.0 504 8.6866 0.3434
1.9584 9.0 567 9.2581 0.3939
1.9584 10.0 630 9.2968 0.3687
1.9584 11.0 693 10.2154 0.3838
1.9584 12.0 756 10.1269 0.5657
1.9584 13.0 819 9.4519 0.3889
1.9584 14.0 882 9.7303 0.3737
1.9584 15.0 945 9.8894 0.3586
2.7625 16.0 1008 9.8269 0.3283
2.7625 17.0 1071 9.7131 0.3333
2.7625 18.0 1134 9.7690 0.3485
2.7625 19.0 1197 9.7724 0.3333
2.7625 20.0 1260 9.8628 0.4848

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
0
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for afaji/bert-base-uncased-medmcqa-distill-of-bert-base-uncased-gpqa

Finetuned
(1902)
this model