metadata
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fresh-2-layer-medmcqa10000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu
results: []
fresh-2-layer-medmcqa10000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 182.8575
- Accuracy: 0.4225
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 321
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.32 | 100 | 200.8704 | 0.264 |
No log | 0.64 | 200 | 196.7610 | 0.376 |
No log | 0.96 | 300 | 208.2900 | 0.39 |
No log | 1.28 | 400 | 191.1668 | 0.382 |
139.6607 | 1.6 | 500 | 200.9705 | 0.398 |
139.6607 | 1.92 | 600 | 189.0896 | 0.406 |
139.6607 | 2.24 | 700 | 185.7183 | 0.41 |
139.6607 | 2.56 | 800 | 174.6011 | 0.426 |
139.6607 | 2.88 | 900 | 186.1249 | 0.422 |
79.571 | 3.19 | 1000 | 185.1113 | 0.424 |
79.571 | 3.51 | 1100 | 181.1421 | 0.398 |
79.571 | 3.83 | 1200 | 186.5035 | 0.412 |
79.571 | 4.15 | 1300 | 184.2203 | 0.432 |
79.571 | 4.47 | 1400 | 189.4636 | 0.396 |
56.051 | 4.79 | 1500 | 188.4894 | 0.412 |
56.051 | 5.11 | 1600 | 190.0390 | 0.43 |
56.051 | 5.43 | 1700 | 191.3842 | 0.416 |
56.051 | 5.75 | 1800 | 195.1680 | 0.406 |
Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0