See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-70B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: afrias5/AlpacaJustOriginalFeedback
type: alpaca
field: text
# resume_from_checkpoint: ~/scratch/70B_070424
val_set_size: 0.20
output_dir: ~/scratch/70BThursday6
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir: ~/scratch/70BThursday5
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
# wandb_project: '70BBCheckpoint'
wandb_entity:
wandb_watch:
wandb_run_id: 'z757bx3a'
# wandb_name: 'lora_70B'
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 6
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
hub_model_id: afrias5/70BTest
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
save_steps:
save_total_limit: 1
gradient_checkpointing: true
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
eval_strategy: "epoch"
warmup_steps: 10
eval_sample_packing: False
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 10
# saves_per_epoch: 1
debug:
save_strategy:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.0 #prevent overfitting since using small dataset
fsdp:
save_safetensors:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
70BTest
This model is a fine-tuned version of meta-llama/Meta-Llama-3-70B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3704
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.487 | 1.0 | 1 | 1.3882 |
0.5958 | 2.0 | 2 | 1.3882 |
0.1585 | 2.1667 | 3 | 1.3543 |
0.3686 | 3.0 | 4 | 1.3543 |
0.6433 | 4.0 | 5 | 1.3543 |
0.227 | 4.1667 | 6 | 1.3704 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for afrias5/70BTest
Base model
meta-llama/Meta-Llama-3-70B