metadata
base_model: BEE-spoke-data/beecoder-220M-python
datasets:
- BEE-spoke-data/pypi_clean-deduped
- bigcode/the-stack-smol-xl
- EleutherAI/proof-pile-2
inference: false
language:
- en
license: apache-2.0
metrics:
- accuracy
model_creator: BEE-spoke-data
model_name: beecoder-220M-python
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- python
- codegen
- markdown
- smol_llama
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
widget:
- example_title: Add Numbers Function
text: |
def add_numbers(a, b):
return
- example_title: Car Class
text: |
class Car:
def __init__(self, make, model):
self.make = make
self.model = model
def display_car(self):
- example_title: Pandas DataFrame
text: |
import pandas as pd
data = {'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19]}
df = pd.DataFrame(data).convert_dtypes()
# eda
- example_title: Factorial Function
text: |
def factorial(n):
if n == 0:
return 1
else:
- example_title: Fibonacci Function
text: |
def fibonacci(n):
if n <= 0:
raise ValueError("Incorrect input")
elif n == 1:
return 0
elif n == 2:
return 1
else:
- example_title: Matplotlib Plot
text: |
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10, 100)
# simple plot
- example_title: Reverse String Function
text: |
def reverse_string(s:str) -> str:
return
- example_title: Palindrome Function
text: |
def is_palindrome(word:str) -> bool:
return
- example_title: Bubble Sort Function
text: |
def bubble_sort(lst: list):
n = len(lst)
for i in range(n):
for j in range(0, n-i-1):
- example_title: Binary Search Function
text: |
def binary_search(arr, low, high, x):
if high >= low:
mid = (high + low) // 2
if arr[mid] == x:
return mid
elif arr[mid] > x:
BEE-spoke-data/beecoder-220M-python-GGUF
Quantized GGUF model files for beecoder-220M-python from BEE-spoke-data
Name | Quant method | Size |
---|---|---|
beecoder-220m-python.fp16.gguf | fp16 | 436.50 MB |
beecoder-220m-python.q2_k.gguf | q2_k | 94.43 MB |
beecoder-220m-python.q3_k_m.gguf | q3_k_m | 114.65 MB |
beecoder-220m-python.q4_k_m.gguf | q4_k_m | 137.58 MB |
beecoder-220m-python.q5_k_m.gguf | q5_k_m | 157.91 MB |
beecoder-220m-python.q6_k.gguf | q6_k | 179.52 MB |
beecoder-220m-python.q8_0.gguf | q8_0 | 232.28 MB |
Original Model Card:
BEE-spoke-data/beecoder-220M-python
This is BEE-spoke-data/smol_llama-220M-GQA
fine-tuned for code generation on:
- filtered version of stack-smol-XL
- deduped version of 'algebraic stack' from proof-pile-2
- cleaned and deduped pypi (last dataset)
This model (and the base model) were both trained using ctx length 2048.
examples
Example script for inference testing: here
It has its limitations at 220M, but seems decent for single-line or docstring generation, and/or being used for speculative decoding for such purposes.
The screenshot is on CPU on a laptop.