File size: 3,838 Bytes
b764267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
base_model: BEE-spoke-data/smol_llama-220M-open_instruct
datasets:
- VMware/open-instruct
inference: false
license: apache-2.0
model_creator: BEE-spoke-data
model_name: smol_llama-220M-open_instruct
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
widget:
- example_title: burritos
  text: "Below is an instruction that describes a task, paired with an input that
    provides further context. Write a response that appropriately completes the request.
    \ \n   \n### Instruction:  \n  \nWrite an ode to Chipotle burritos. \n  \n###
    Response:  \n"
---
# BEE-spoke-data/smol_llama-220M-open_instruct-GGUF

Quantized GGUF model files for [smol_llama-220M-open_instruct](https://huggingface.co/BEE-spoke-data/smol_llama-220M-open_instruct) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data)


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [smol_llama-220m-open_instruct.fp16.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.fp16.gguf) | fp16 | 436.50 MB  |
| [smol_llama-220m-open_instruct.q2_k.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q2_k.gguf) | q2_k | 94.43 MB  |
| [smol_llama-220m-open_instruct.q3_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q3_k_m.gguf) | q3_k_m | 114.65 MB  |
| [smol_llama-220m-open_instruct.q4_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q4_k_m.gguf) | q4_k_m | 137.58 MB  |
| [smol_llama-220m-open_instruct.q5_k_m.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q5_k_m.gguf) | q5_k_m | 157.91 MB  |
| [smol_llama-220m-open_instruct.q6_k.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q6_k.gguf) | q6_k | 179.52 MB  |
| [smol_llama-220m-open_instruct.q8_0.gguf](https://huggingface.co/afrideva/smol_llama-220M-open_instruct-GGUF/resolve/main/smol_llama-220m-open_instruct.q8_0.gguf) | q8_0 | 232.28 MB  |



## Original Model Card:
# BEE-spoke-data/smol_llama-220M-open_instruct

> Please note that this is an experiment, and the model has limitations because it is smol.


prompt format is alpaca.


```
Below is an instruction that describes a task, paired with an input that
provides further context. Write a response that appropriately completes
the request.  

### Instruction:  

How can I increase my meme production/output? Currently, I only create them in ancient babylonian which is time consuming.  

### Response:
```

This was **not** trained using a separate 'inputs' field (as `VMware/open-instruct` doesn't use one).


## Example

Output on the text above ^. The inference API is set to sample with low temp so you should see (_at least slightly_) different generations each time.


![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/MdOB7TD5UosPGZvdZWG0I.png)

Note that the inference API parameters used here are an initial educated guess, and may be updated over time:

```yml
inference:
  parameters:
    do_sample: true
    renormalize_logits: true
    temperature: 0.25
    top_p: 0.95
    top_k: 50
    min_new_tokens: 2
    max_new_tokens: 96
    repetition_penalty: 1.04
    no_repeat_ngram_size: 6
    epsilon_cutoff: 0.0006
```

Feel free to experiment with the parameters using the model in Python and let us know if you have improved results with other params!

## Data 

This was trained on `VMware/open-instruct` so do whatever you want, provided it falls under the base apache-2.0 license :)

---