s-xlmr-bn

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Model Details

Training

The model was fine-tuned using Multilingual Knowledge Distillation method. We took paraphrase-distilroberta-base-v2 as the teacher model and xlm-roberta-large as the student model.

image

Intended Use:

  • Primary Use Case: Semantic similarity, clustering, and semantic searches
  • Potential Use Cases: Document retrieval, information retrieval, recommendation systems, chatbot systems , FAQ system

Usage

Using Sentence-Transformers

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"]

model = SentenceTransformer('afschowdhury/s-xlmr-bn')
embeddings = model.encode(sentences)
print(embeddings)

Using HuggingFace Transformers

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('afschowdhury/s-xlmr-bn')
model = AutoModel.from_pretrained('afschowdhury/s-xlmr-bn')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Point of Contact

Asif Faisal Chowdhury
E-mail: afschowdhury@gmail.com | Linked-in: afschowdhury

Downloads last month
45
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.