aftabnaveed's picture
Model save
3ba25af verified
---
license: apache-2.0
base_model: sentence-transformers/all-MiniLM-L6-v2
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: all-MiniLM-L6-v2-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.739
- name: F1
type: f1
value: 0.6914681482476445
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# all-MiniLM-L6-v2-finetuned-emotion
This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7802
- Accuracy: 0.739
- F1: 0.6915
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.2866 | 1.0 | 250 | 0.9490 | 0.693 | 0.6275 |
| 0.8726 | 2.0 | 500 | 0.7802 | 0.739 | 0.6915 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.1
- Datasets 2.19.1
- Tokenizers 0.19.1