This is the repo for Gen AI final project
Info
License: Mit
Original code: https://github.com/hyunwoongko/transformer
My version: https://github.com/Agaresd47/transformer_SAE
Data: Source: https://huggingface.co/datasets/li2017dailydialog/daily_dialog
Usage
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch.nn.functional as F
# Load the model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained("agaresd/your-model-name")
tokenizer = AutoTokenizer.from_pretrained("agaresd/your-model-name")
# Define the label mapping
label_mapping = {
0: "no emotion",
1: "anger ",
2: "disgust ",
3: "fear ",
4: "Emotion: Happy",
5: "Emotion: Sad",
6: "Emotion: surprise"
}
# Input text
input_text = "happy"
# Tokenize and get model outputs
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model(**inputs)
# Get logits, apply softmax, and find the predicted class
logits = outputs.logits
probabilities = F.softmax(logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
# Map the predicted class to a word
predicted_label = label_mapping[predicted_class]
print(f"Input: {input_text}")
print(f"Predicted Label: {predicted_label}")
- Downloads last month
- 38