ahlem-phantom's picture
End of training
60783bc
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - ls-generated4
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-invoice-model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ls-generated4
          type: ls-generated4
          config: invoice
          split: test
          args: invoice
        metrics:
          - name: Precision
            type: precision
            value: 0.9185733512786003
          - name: Recall
            type: recall
            value: 0.9375
          - name: F1
            type: f1
            value: 0.9279401767505099
          - name: Accuracy
            type: accuracy
            value: 0.9536870503597122

layoutlmv3-invoice-model

This model is a fine-tuned version of microsoft/layoutlmv3-base on the ls-generated4 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3694
  • Precision: 0.9186
  • Recall: 0.9375
  • F1: 0.9279
  • Accuracy: 0.9537

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.85 100 0.7836 0.5238 0.5982 0.5585 0.7680
No log 1.69 200 0.4954 0.6888 0.7479 0.7172 0.8422
No log 2.54 300 0.3483 0.7807 0.8462 0.8121 0.9040
No log 3.39 400 0.3200 0.8113 0.8654 0.8375 0.9125
0.5923 4.24 500 0.2775 0.8593 0.8853 0.8721 0.9319
0.5923 5.08 600 0.2674 0.8700 0.9052 0.8872 0.9377
0.5923 5.93 700 0.2766 0.8739 0.9135 0.8932 0.9386
0.5923 6.78 800 0.2641 0.8879 0.9190 0.9031 0.9472
0.5923 7.63 900 0.2893 0.9094 0.9238 0.9165 0.9447
0.0802 8.47 1000 0.3369 0.9145 0.9258 0.9201 0.9465
0.0802 9.32 1100 0.3037 0.9043 0.9341 0.9189 0.9505
0.0802 10.17 1200 0.3510 0.9032 0.9231 0.9130 0.9472
0.0802 11.02 1300 0.3224 0.9138 0.9251 0.9195 0.9501
0.0802 11.86 1400 0.3873 0.9133 0.9265 0.9199 0.9456
0.0198 12.71 1500 0.3786 0.9120 0.9327 0.9222 0.9492
0.0198 13.56 1600 0.3807 0.9050 0.9293 0.9170 0.9469
0.0198 14.41 1700 0.3664 0.9088 0.9313 0.9199 0.9510
0.0198 15.25 1800 0.3582 0.9152 0.9341 0.9245 0.9521
0.0198 16.1 1900 0.3736 0.9198 0.9368 0.9282 0.9528
0.007 16.95 2000 0.3694 0.9186 0.9375 0.9279 0.9537

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1