Edit model card

convnextv2-tiny-1k-224-finetuned-eurosat-50

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2472
  • Accuracy: 0.7763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9434 0.97 18 1.8549 0.2847
1.7722 2.0 37 1.6757 0.3661
1.5502 2.97 55 1.4652 0.4339
1.2595 4.0 74 1.1916 0.6068
0.9304 4.97 92 1.0282 0.6576
0.7333 6.0 111 0.8574 0.7051
0.6015 6.97 129 0.8427 0.6983
0.4617 8.0 148 0.7682 0.7458
0.3162 8.97 166 0.7453 0.7559
0.2249 10.0 185 0.7475 0.7661
0.1667 10.97 203 0.7677 0.7492
0.091 12.0 222 1.0114 0.7220
0.0783 12.97 240 1.0206 0.7186
0.0613 14.0 259 0.8466 0.7492
0.0703 14.97 277 1.1067 0.7119
0.0335 16.0 296 1.0117 0.7390
0.0171 16.97 314 0.9367 0.7525
0.0253 18.0 333 1.3196 0.7153
0.0201 18.97 351 1.0530 0.7525
0.0041 20.0 370 1.0523 0.7729
0.0154 20.97 388 1.1311 0.7661
0.0025 22.0 407 1.1477 0.7729
0.0036 22.97 425 1.1309 0.7627
0.002 24.0 444 1.1399 0.7729
0.0014 24.97 462 1.1543 0.7797
0.0011 26.0 481 1.1799 0.7763
0.0011 26.97 499 1.1579 0.7661
0.0009 28.0 518 1.1907 0.7627
0.0009 28.97 536 1.1878 0.7661
0.0008 30.0 555 1.1986 0.7661
0.0008 30.97 573 1.2051 0.7661
0.0007 32.0 592 1.2073 0.7661
0.0007 32.97 610 1.2156 0.7661
0.0007 34.0 629 1.2218 0.7627
0.0007 34.97 647 1.2173 0.7661
0.0006 36.0 666 1.2217 0.7729
0.0006 36.97 684 1.2272 0.7695
0.0006 38.0 703 1.2261 0.7763
0.0006 38.97 721 1.2305 0.7763
0.0006 40.0 740 1.2325 0.7763
0.0005 40.97 758 1.2362 0.7763
0.0005 42.0 777 1.2409 0.7763
0.0005 42.97 795 1.2422 0.7763
0.0005 44.0 814 1.2429 0.7729
0.0005 44.97 832 1.2434 0.7763
0.0005 46.0 851 1.2458 0.7763
0.0005 46.97 869 1.2468 0.7763
0.0005 48.0 888 1.2471 0.7763
0.0005 48.65 900 1.2472 0.7763

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results