metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: Augmented-Final
split: train
args: Augmented-Final
metrics:
- name: Accuracy
type: accuracy
value: 0.9722507708119219
swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-eurosat-50
This model is a fine-tuned version of microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0966
- Accuracy: 0.9723
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9035 | 1.0 | 61 | 1.8946 | 0.2713 |
1.4731 | 2.0 | 122 | 1.2931 | 0.5560 |
0.9549 | 3.0 | 183 | 0.7530 | 0.6999 |
0.7375 | 4.0 | 244 | 0.4989 | 0.8129 |
0.615 | 5.0 | 305 | 0.3545 | 0.8746 |
0.4751 | 6.0 | 366 | 0.2399 | 0.9168 |
0.3778 | 7.0 | 427 | 0.1628 | 0.9558 |
0.3054 | 8.0 | 488 | 0.1202 | 0.9620 |
0.2787 | 9.0 | 549 | 0.0988 | 0.9733 |
0.253 | 10.0 | 610 | 0.0966 | 0.9723 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3