Testing
#1
by
PankajSingh0018
- opened
- .gitattributes +0 -1
- README.md +1 -72
- config.json +1 -3
- configuration_indictrans.py +1 -3
- dict.SRC.json +0 -0
- dict.TGT.json +0 -0
- model.SRC +0 -0
- model.TGT +0 -3
- model.safetensors +0 -3
- modeling_indictrans.py +79 -425
- special_tokens_map.json +0 -6
- tokenization_indictrans.py +0 -261
- tokenizer_config.json +0 -51
.gitattributes
CHANGED
@@ -33,4 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
model.TGT filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
README.md
CHANGED
@@ -60,78 +60,7 @@ Please refer to `Appendix D: Model Card` of the [preprint](https://arxiv.org/abs
|
|
60 |
|
61 |
### Usage Instructions
|
62 |
|
63 |
-
Please refer to the [github repository](https://github.com/AI4Bharat/IndicTrans2/tree/main/
|
64 |
-
|
65 |
-
```python
|
66 |
-
import torch
|
67 |
-
from transformers import (
|
68 |
-
AutoModelForSeq2SeqLM,
|
69 |
-
AutoTokenizer,
|
70 |
-
)
|
71 |
-
from IndicTransTokenizer import IndicProcessor
|
72 |
-
|
73 |
-
|
74 |
-
model_name = "ai4bharat/indictrans2-en-indic-1B"
|
75 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
76 |
-
|
77 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)
|
78 |
-
|
79 |
-
ip = IndicProcessor(inference=True)
|
80 |
-
|
81 |
-
input_sentences = [
|
82 |
-
"When I was young, I used to go to the park every day.",
|
83 |
-
"We watched a new movie last week, which was very inspiring.",
|
84 |
-
"If you had met me at that time, we would have gone out to eat.",
|
85 |
-
"My friend has invited me to his birthday party, and I will give him a gift.",
|
86 |
-
]
|
87 |
-
|
88 |
-
src_lang, tgt_lang = "eng_Latn", "hin_Deva"
|
89 |
-
|
90 |
-
batch = ip.preprocess_batch(
|
91 |
-
input_sentences,
|
92 |
-
src_lang=src_lang,
|
93 |
-
tgt_lang=tgt_lang,
|
94 |
-
)
|
95 |
-
|
96 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
97 |
-
|
98 |
-
# Tokenize the sentences and generate input encodings
|
99 |
-
inputs = tokenizer(
|
100 |
-
batch,
|
101 |
-
truncation=True,
|
102 |
-
padding="longest",
|
103 |
-
return_tensors="pt",
|
104 |
-
return_attention_mask=True,
|
105 |
-
).to(DEVICE)
|
106 |
-
|
107 |
-
# Generate translations using the model
|
108 |
-
with torch.no_grad():
|
109 |
-
generated_tokens = model.generate(
|
110 |
-
**inputs,
|
111 |
-
use_cache=True,
|
112 |
-
min_length=0,
|
113 |
-
max_length=256,
|
114 |
-
num_beams=5,
|
115 |
-
num_return_sequences=1,
|
116 |
-
)
|
117 |
-
|
118 |
-
# Decode the generated tokens into text
|
119 |
-
with tokenizer.as_target_tokenizer():
|
120 |
-
generated_tokens = tokenizer.batch_decode(
|
121 |
-
generated_tokens.detach().cpu().tolist(),
|
122 |
-
skip_special_tokens=True,
|
123 |
-
clean_up_tokenization_spaces=True,
|
124 |
-
)
|
125 |
-
|
126 |
-
# Postprocess the translations, including entity replacement
|
127 |
-
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
|
128 |
-
|
129 |
-
for input_sentence, translation in zip(input_sentences, translations):
|
130 |
-
print(f"{src_lang}: {input_sentence}")
|
131 |
-
print(f"{tgt_lang}: {translation}")
|
132 |
-
```
|
133 |
-
|
134 |
-
**Note: IndicTrans2 is now compatible with AutoTokenizer, however you need to use IndicProcessor from [IndicTransTokenizer](https://github.com/VarunGumma/IndicTransTokenizer) for preprocessing before tokenization.**
|
135 |
|
136 |
|
137 |
### Citation
|
|
|
60 |
|
61 |
### Usage Instructions
|
62 |
|
63 |
+
Please refer to the [github repository](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_inference) for a detail description on how to use HF compatible IndicTrans2 models for inference.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
### Citation
|
config.json
CHANGED
@@ -9,7 +9,6 @@
|
|
9 |
"AutoConfig": "configuration_indictrans.IndicTransConfig",
|
10 |
"AutoModelForSeq2SeqLM": "modeling_indictrans.IndicTransForConditionalGeneration"
|
11 |
},
|
12 |
-
"tokenizer_class": "IndicTransTokenizer",
|
13 |
"attention_dropout": 0.0,
|
14 |
"bos_token_id": 0,
|
15 |
"decoder_attention_heads": 16,
|
@@ -41,6 +40,5 @@
|
|
41 |
"share_decoder_input_output_embed": false,
|
42 |
"torch_dtype": "float32",
|
43 |
"transformers_version": "4.32.1",
|
44 |
-
"use_cache": true
|
45 |
-
"attn_implementation": "eager"
|
46 |
}
|
|
|
9 |
"AutoConfig": "configuration_indictrans.IndicTransConfig",
|
10 |
"AutoModelForSeq2SeqLM": "modeling_indictrans.IndicTransForConditionalGeneration"
|
11 |
},
|
|
|
12 |
"attention_dropout": 0.0,
|
13 |
"bos_token_id": 0,
|
14 |
"decoder_attention_heads": 16,
|
|
|
40 |
"share_decoder_input_output_embed": false,
|
41 |
"torch_dtype": "float32",
|
42 |
"transformers_version": "4.32.1",
|
43 |
+
"use_cache": true
|
|
|
44 |
}
|
configuration_indictrans.py
CHANGED
@@ -118,7 +118,6 @@ class IndicTransConfig(PretrainedConfig):
|
|
118 |
pad_token_id=1,
|
119 |
bos_token_id=0,
|
120 |
eos_token_id=2,
|
121 |
-
attn_implementation="eager",
|
122 |
**kwargs,
|
123 |
):
|
124 |
self.encoder_vocab_size = encoder_vocab_size
|
@@ -147,8 +146,7 @@ class IndicTransConfig(PretrainedConfig):
|
|
147 |
self.num_hidden_layers = encoder_layers
|
148 |
self.scale_embedding = scale_embedding
|
149 |
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
150 |
-
|
151 |
-
|
152 |
super().__init__(
|
153 |
pad_token_id=pad_token_id,
|
154 |
bos_token_id=bos_token_id,
|
|
|
118 |
pad_token_id=1,
|
119 |
bos_token_id=0,
|
120 |
eos_token_id=2,
|
|
|
121 |
**kwargs,
|
122 |
):
|
123 |
self.encoder_vocab_size = encoder_vocab_size
|
|
|
146 |
self.num_hidden_layers = encoder_layers
|
147 |
self.scale_embedding = scale_embedding
|
148 |
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
149 |
+
|
|
|
150 |
super().__init__(
|
151 |
pad_token_id=pad_token_id,
|
152 |
bos_token_id=bos_token_id,
|
dict.SRC.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
dict.TGT.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
model.SRC
DELETED
Binary file (759 kB)
|
|
model.TGT
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ac9257c8e76b8b607705b959cc3d075656ea33032f7a974e467b8941df6e98d4
|
3 |
-
size 3256903
|
|
|
|
|
|
|
|
model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:35d28fe035cd6ac026536b555558b07762425c8b930670219063e4fc3666c96d
|
3 |
-
size 4462265272
|
|
|
|
|
|
|
|
modeling_indictrans.py
CHANGED
@@ -23,28 +23,15 @@ import torch.nn as nn
|
|
23 |
from torch.nn import functional as F
|
24 |
|
25 |
from transformers.activations import ACT2FN
|
26 |
-
|
27 |
-
from transformers.modeling_attn_mask_utils import (
|
28 |
-
_prepare_4d_attention_mask,
|
29 |
-
_prepare_4d_attention_mask_for_sdpa,
|
30 |
-
_prepare_4d_causal_attention_mask,
|
31 |
-
_prepare_4d_causal_attention_mask_for_sdpa,
|
32 |
-
)
|
33 |
-
|
34 |
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
35 |
from transformers.modeling_outputs import (
|
36 |
BaseModelOutput,
|
37 |
BaseModelOutputWithPastAndCrossAttentions,
|
38 |
Seq2SeqLMOutput,
|
39 |
-
Seq2SeqModelOutput
|
40 |
)
|
41 |
|
42 |
-
from transformers.utils import
|
43 |
-
logging,
|
44 |
-
is_flash_attn_2_available,
|
45 |
-
is_flash_attn_greater_or_equal_2_10,
|
46 |
-
)
|
47 |
-
|
48 |
from transformers.modeling_utils import PreTrainedModel
|
49 |
|
50 |
from .configuration_indictrans import IndicTransConfig
|
@@ -52,27 +39,9 @@ from .configuration_indictrans import IndicTransConfig
|
|
52 |
|
53 |
logger = logging.get_logger(__name__)
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
if is_flash_attn_2_available():
|
59 |
-
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
60 |
-
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
61 |
-
except:
|
62 |
-
pass
|
63 |
-
|
64 |
-
|
65 |
-
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
66 |
-
def _get_unpad_data(attention_mask):
|
67 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
68 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
69 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
70 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
71 |
-
return (
|
72 |
-
indices,
|
73 |
-
cu_seqlens,
|
74 |
-
max_seqlen_in_batch,
|
75 |
-
)
|
76 |
|
77 |
|
78 |
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
@@ -94,6 +63,54 @@ def shift_tokens_right(
|
|
94 |
return shifted_input_ids
|
95 |
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
def create_position_ids_from_input_ids(
|
98 |
input_ids, padding_idx, past_key_values_length=0
|
99 |
):
|
@@ -230,15 +247,12 @@ class IndicTransAttention(nn.Module):
|
|
230 |
dropout: float = 0.0,
|
231 |
is_decoder: bool = False,
|
232 |
bias: bool = True,
|
233 |
-
is_causal: bool = False,
|
234 |
-
config: Optional[IndicTransConfig] = None,
|
235 |
):
|
236 |
super().__init__()
|
237 |
self.embed_dim = embed_dim
|
238 |
self.num_heads = num_heads
|
239 |
self.dropout = dropout
|
240 |
self.head_dim = embed_dim // num_heads
|
241 |
-
self.config = config
|
242 |
|
243 |
if (self.head_dim * num_heads) != self.embed_dim:
|
244 |
raise ValueError(
|
@@ -247,7 +261,6 @@ class IndicTransAttention(nn.Module):
|
|
247 |
)
|
248 |
self.scaling = self.head_dim**-0.5
|
249 |
self.is_decoder = is_decoder
|
250 |
-
self.is_causal = is_causal
|
251 |
|
252 |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
253 |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
@@ -389,345 +402,17 @@ class IndicTransAttention(nn.Module):
|
|
389 |
attn_output = self.out_proj(attn_output)
|
390 |
|
391 |
return attn_output, attn_weights_reshaped, past_key_value
|
392 |
-
|
393 |
-
|
394 |
-
class IndicTransFlashAttention2(IndicTransAttention):
|
395 |
-
"""
|
396 |
-
IndicTrans flash attention module. This module inherits from `IndicTransAttention` as the weights of the module stays
|
397 |
-
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
398 |
-
flash attention and deal with padding tokens in case the input contains any of them.
|
399 |
-
"""
|
400 |
-
|
401 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
402 |
-
def __init__(self, *args, **kwargs):
|
403 |
-
super().__init__(*args, **kwargs)
|
404 |
-
|
405 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
406 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
407 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
408 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
409 |
-
|
410 |
-
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
411 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
412 |
-
|
413 |
-
def forward(
|
414 |
-
self,
|
415 |
-
hidden_states: torch.Tensor,
|
416 |
-
key_value_states: Optional[torch.Tensor] = None,
|
417 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
418 |
-
attention_mask: Optional[torch.Tensor] = None,
|
419 |
-
layer_head_mask: Optional[torch.Tensor] = None,
|
420 |
-
output_attentions: bool = False,
|
421 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
422 |
-
# IndicTransFlashAttention2 attention does not support output_attentions
|
423 |
-
if output_attentions:
|
424 |
-
raise ValueError("IndicTransFlashAttention2 attention does not support output_attentions")
|
425 |
-
|
426 |
-
# if key_value_states are provided this layer is used as a cross-attention layer
|
427 |
-
# for the decoder
|
428 |
-
is_cross_attention = key_value_states is not None
|
429 |
-
|
430 |
-
bsz, q_len, _ = hidden_states.size()
|
431 |
-
|
432 |
-
# get query proj
|
433 |
-
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
|
434 |
-
# get key, value proj
|
435 |
-
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
436 |
-
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
437 |
-
# the provided `key_value_states` to support prefix tuning
|
438 |
-
if (
|
439 |
-
is_cross_attention
|
440 |
-
and past_key_value is not None
|
441 |
-
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
442 |
-
):
|
443 |
-
# reuse k,v, cross_attentions
|
444 |
-
key_states = past_key_value[0].transpose(1, 2)
|
445 |
-
value_states = past_key_value[1].transpose(1, 2)
|
446 |
-
elif is_cross_attention:
|
447 |
-
# cross_attentions
|
448 |
-
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
|
449 |
-
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
|
450 |
-
elif past_key_value is not None:
|
451 |
-
# reuse k, v, self_attention
|
452 |
-
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
|
453 |
-
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
|
454 |
-
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
|
455 |
-
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
|
456 |
-
else:
|
457 |
-
# self_attention
|
458 |
-
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
|
459 |
-
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
|
460 |
-
|
461 |
-
if self.is_decoder:
|
462 |
-
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
463 |
-
# Further calls to cross_attention layer can then reuse all cross-attention
|
464 |
-
# key/value_states (first "if" case)
|
465 |
-
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
466 |
-
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
467 |
-
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
468 |
-
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
469 |
-
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
|
470 |
-
|
471 |
-
kv_seq_len = key_states.shape[-2]
|
472 |
-
if past_key_value is not None:
|
473 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
474 |
-
|
475 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
476 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
477 |
-
# cast them back in the correct dtype just to be sure everything works as expected.
|
478 |
-
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
479 |
-
# in fp32. (LlamaRMSNorm handles it correctly)
|
480 |
-
|
481 |
-
input_dtype = query_states.dtype
|
482 |
-
if input_dtype == torch.float32:
|
483 |
-
if torch.is_autocast_enabled():
|
484 |
-
target_dtype = torch.get_autocast_gpu_dtype()
|
485 |
-
# Handle the case where the model is quantized
|
486 |
-
elif hasattr(self.config, "_pre_quantization_dtype"):
|
487 |
-
target_dtype = self.config._pre_quantization_dtype
|
488 |
-
else:
|
489 |
-
target_dtype = self.q_proj.weight.dtype
|
490 |
-
|
491 |
-
logger.warning_once(
|
492 |
-
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
493 |
-
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
494 |
-
f" {target_dtype}."
|
495 |
-
)
|
496 |
-
|
497 |
-
query_states = query_states.to(target_dtype)
|
498 |
-
key_states = key_states.to(target_dtype)
|
499 |
-
value_states = value_states.to(target_dtype)
|
500 |
-
|
501 |
-
attn_output = self._flash_attention_forward(
|
502 |
-
query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout
|
503 |
-
)
|
504 |
-
|
505 |
-
attn_output = attn_output.reshape(bsz, q_len, -1)
|
506 |
-
attn_output = self.out_proj(attn_output)
|
507 |
-
|
508 |
-
if not output_attentions:
|
509 |
-
attn_weights = None
|
510 |
-
|
511 |
-
return attn_output, attn_weights, past_key_value
|
512 |
-
|
513 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
514 |
-
def _flash_attention_forward(
|
515 |
-
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
516 |
-
):
|
517 |
-
"""
|
518 |
-
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
519 |
-
first unpad the input, then computes the attention scores and pad the final attention scores.
|
520 |
-
|
521 |
-
Args:
|
522 |
-
query_states (`torch.Tensor`):
|
523 |
-
Input query states to be passed to Flash Attention API
|
524 |
-
key_states (`torch.Tensor`):
|
525 |
-
Input key states to be passed to Flash Attention API
|
526 |
-
value_states (`torch.Tensor`):
|
527 |
-
Input value states to be passed to Flash Attention API
|
528 |
-
attention_mask (`torch.Tensor`):
|
529 |
-
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
530 |
-
position of padding tokens and 1 for the position of non-padding tokens.
|
531 |
-
dropout (`float`):
|
532 |
-
Attention dropout
|
533 |
-
softmax_scale (`float`, *optional*):
|
534 |
-
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
535 |
-
"""
|
536 |
-
if not self._flash_attn_uses_top_left_mask:
|
537 |
-
causal = self.is_causal
|
538 |
-
else:
|
539 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
540 |
-
causal = self.is_causal and query_length != 1
|
541 |
-
|
542 |
-
# Contains at least one padding token in the sequence
|
543 |
-
if attention_mask is not None:
|
544 |
-
batch_size = query_states.shape[0]
|
545 |
-
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
546 |
-
query_states, key_states, value_states, attention_mask, query_length
|
547 |
-
)
|
548 |
-
|
549 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
550 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
551 |
-
|
552 |
-
attn_output_unpad = flash_attn_varlen_func(
|
553 |
-
query_states,
|
554 |
-
key_states,
|
555 |
-
value_states,
|
556 |
-
cu_seqlens_q=cu_seqlens_q,
|
557 |
-
cu_seqlens_k=cu_seqlens_k,
|
558 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
559 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
560 |
-
dropout_p=dropout,
|
561 |
-
softmax_scale=softmax_scale,
|
562 |
-
causal=causal,
|
563 |
-
)
|
564 |
-
|
565 |
-
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
566 |
-
else:
|
567 |
-
attn_output = flash_attn_func(
|
568 |
-
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
569 |
-
)
|
570 |
-
|
571 |
-
return attn_output
|
572 |
|
573 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
574 |
-
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
575 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
576 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
577 |
-
|
578 |
-
key_layer = index_first_axis(
|
579 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
580 |
-
)
|
581 |
-
value_layer = index_first_axis(
|
582 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
583 |
-
)
|
584 |
-
if query_length == kv_seq_len:
|
585 |
-
query_layer = index_first_axis(
|
586 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
587 |
-
)
|
588 |
-
cu_seqlens_q = cu_seqlens_k
|
589 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
590 |
-
indices_q = indices_k
|
591 |
-
elif query_length == 1:
|
592 |
-
max_seqlen_in_batch_q = 1
|
593 |
-
cu_seqlens_q = torch.arange(
|
594 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
595 |
-
) # There is a memcpy here, that is very bad.
|
596 |
-
indices_q = cu_seqlens_q[:-1]
|
597 |
-
query_layer = query_layer.squeeze(1)
|
598 |
-
else:
|
599 |
-
# The -q_len: slice assumes left padding.
|
600 |
-
attention_mask = attention_mask[:, -query_length:]
|
601 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
602 |
-
|
603 |
-
return (
|
604 |
-
query_layer,
|
605 |
-
key_layer,
|
606 |
-
value_layer,
|
607 |
-
indices_q,
|
608 |
-
(cu_seqlens_q, cu_seqlens_k),
|
609 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
610 |
-
)
|
611 |
-
|
612 |
-
|
613 |
-
class IndicTransSdpaAttention(IndicTransAttention):
|
614 |
-
def forward(
|
615 |
-
self,
|
616 |
-
hidden_states: torch.Tensor,
|
617 |
-
key_value_states: Optional[torch.Tensor] = None,
|
618 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
619 |
-
attention_mask: Optional[torch.Tensor] = None,
|
620 |
-
layer_head_mask: Optional[torch.Tensor] = None,
|
621 |
-
output_attentions: bool = False,
|
622 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
623 |
-
"""Input shape: Batch x Time x Channel"""
|
624 |
-
if output_attentions or layer_head_mask is not None:
|
625 |
-
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
|
626 |
-
logger.warning_once(
|
627 |
-
"IndicTransModel is using IndicTransSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
|
628 |
-
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
629 |
-
)
|
630 |
-
return super().forward(
|
631 |
-
hidden_states,
|
632 |
-
key_value_states=key_value_states,
|
633 |
-
past_key_value=past_key_value,
|
634 |
-
attention_mask=attention_mask,
|
635 |
-
layer_head_mask=layer_head_mask,
|
636 |
-
output_attentions=output_attentions,
|
637 |
-
)
|
638 |
-
|
639 |
-
# if key_value_states are provided this layer is used as a cross-attention layer
|
640 |
-
# for the decoder
|
641 |
-
is_cross_attention = key_value_states is not None
|
642 |
-
|
643 |
-
bsz, tgt_len, _ = hidden_states.size()
|
644 |
-
|
645 |
-
# get query proj
|
646 |
-
query_states = self.q_proj(hidden_states)
|
647 |
-
# get key, value proj
|
648 |
-
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
649 |
-
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
650 |
-
# the provided `key_value_states` to support prefix tuning
|
651 |
-
if (
|
652 |
-
is_cross_attention
|
653 |
-
and past_key_value is not None
|
654 |
-
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
655 |
-
):
|
656 |
-
# reuse k,v, cross_attentions
|
657 |
-
key_states = past_key_value[0]
|
658 |
-
value_states = past_key_value[1]
|
659 |
-
elif is_cross_attention:
|
660 |
-
# cross_attentions
|
661 |
-
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
662 |
-
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
663 |
-
elif past_key_value is not None:
|
664 |
-
# reuse k, v, self_attention
|
665 |
-
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
666 |
-
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
667 |
-
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
668 |
-
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
669 |
-
else:
|
670 |
-
# self_attention
|
671 |
-
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
672 |
-
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
673 |
-
|
674 |
-
if self.is_decoder:
|
675 |
-
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
676 |
-
# Further calls to cross_attention layer can then reuse all cross-attention
|
677 |
-
# key/value_states (first "if" case)
|
678 |
-
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
679 |
-
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
680 |
-
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
681 |
-
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
682 |
-
past_key_value = (key_states, value_states)
|
683 |
-
|
684 |
-
query_states = self._shape(query_states, tgt_len, bsz)
|
685 |
-
|
686 |
-
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
|
687 |
-
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
|
688 |
-
attn_output = F.scaled_dot_product_attention(
|
689 |
-
query_states,
|
690 |
-
key_states,
|
691 |
-
value_states,
|
692 |
-
attn_mask=attention_mask,
|
693 |
-
dropout_p=self.dropout if self.training else 0.0,
|
694 |
-
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
|
695 |
-
is_causal=self.is_causal and attention_mask is None and tgt_len > 1,
|
696 |
-
)
|
697 |
-
|
698 |
-
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
|
699 |
-
raise ValueError(
|
700 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
701 |
-
f" {attn_output.size()}"
|
702 |
-
)
|
703 |
-
|
704 |
-
attn_output = attn_output.transpose(1, 2)
|
705 |
-
|
706 |
-
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
707 |
-
# partitioned across GPUs when using tensor-parallelism.
|
708 |
-
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
709 |
-
|
710 |
-
attn_output = self.out_proj(attn_output)
|
711 |
-
|
712 |
-
return attn_output, None, past_key_value
|
713 |
-
|
714 |
-
|
715 |
-
INDICTRANS_ATTENTION_CLASSES = {
|
716 |
-
"eager": IndicTransAttention,
|
717 |
-
"sdpa": IndicTransSdpaAttention,
|
718 |
-
"flash_attention_2": IndicTransFlashAttention2,
|
719 |
-
}
|
720 |
|
721 |
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->IndicTrans
|
722 |
class IndicTransEncoderLayer(nn.Module):
|
723 |
def __init__(self, config: IndicTransConfig):
|
724 |
super().__init__()
|
725 |
self.embed_dim = config.encoder_embed_dim
|
726 |
-
self.self_attn =
|
727 |
embed_dim=self.embed_dim,
|
728 |
num_heads=config.encoder_attention_heads,
|
729 |
dropout=config.attention_dropout,
|
730 |
-
config=config,
|
731 |
)
|
732 |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
733 |
self.dropout = config.dropout
|
@@ -805,25 +490,22 @@ class IndicTransDecoderLayer(nn.Module):
|
|
805 |
super().__init__()
|
806 |
self.embed_dim = config.decoder_embed_dim
|
807 |
|
808 |
-
self.self_attn =
|
809 |
embed_dim=self.embed_dim,
|
810 |
num_heads=config.decoder_attention_heads,
|
811 |
dropout=config.attention_dropout,
|
812 |
is_decoder=True,
|
813 |
-
is_causal=True,
|
814 |
-
config=config,
|
815 |
)
|
816 |
self.dropout = config.dropout
|
817 |
self.activation_fn = ACT2FN[config.activation_function]
|
818 |
self.activation_dropout = config.activation_dropout
|
819 |
|
820 |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
821 |
-
self.encoder_attn =
|
822 |
self.embed_dim,
|
823 |
config.decoder_attention_heads,
|
824 |
dropout=config.attention_dropout,
|
825 |
is_decoder=True,
|
826 |
-
config=config,
|
827 |
)
|
828 |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
829 |
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
@@ -1011,9 +693,6 @@ class IndicTransEncoder(IndicTransPreTrainedModel):
|
|
1011 |
nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
1012 |
)
|
1013 |
|
1014 |
-
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1015 |
-
self._use_sdpa = config._attn_implementation == "sdpa"
|
1016 |
-
|
1017 |
self.gradient_checkpointing = False
|
1018 |
# Initialize weights and apply final processing
|
1019 |
self.post_init()
|
@@ -1100,21 +779,13 @@ class IndicTransEncoder(IndicTransPreTrainedModel):
|
|
1100 |
|
1101 |
hidden_states = inputs_embeds + embed_pos
|
1102 |
if self.layernorm_embedding is not None:
|
1103 |
-
|
1104 |
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
1105 |
|
|
|
1106 |
if attention_mask is not None:
|
1107 |
-
|
1108 |
-
|
1109 |
-
elif self._use_sdpa and head_mask is None and not output_attentions:
|
1110 |
-
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
|
1111 |
-
# the manual implementation that requires a 4D causal mask in all cases.
|
1112 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1113 |
-
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
|
1114 |
-
else:
|
1115 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1116 |
-
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
1117 |
-
|
1118 |
|
1119 |
encoder_states = () if output_hidden_states else None
|
1120 |
all_attentions = () if output_attentions else None
|
@@ -1238,9 +909,6 @@ class IndicTransDecoder(IndicTransPreTrainedModel):
|
|
1238 |
nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
1239 |
)
|
1240 |
|
1241 |
-
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1242 |
-
self._use_sdpa = config._attn_implementation == "sdpa"
|
1243 |
-
|
1244 |
self.gradient_checkpointing = False
|
1245 |
# Initialize weights and apply final processing
|
1246 |
self.post_init()
|
@@ -1363,43 +1031,29 @@ class IndicTransDecoder(IndicTransPreTrainedModel):
|
|
1363 |
if inputs_embeds is None:
|
1364 |
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1365 |
|
1366 |
-
|
1367 |
-
|
1368 |
-
|
1369 |
-
|
1370 |
-
|
1371 |
-
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
|
1372 |
-
# the manual implementation that requires a 4D causal mask in all cases.
|
1373 |
-
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1374 |
-
attention_mask,
|
1375 |
input_shape,
|
1376 |
-
inputs_embeds,
|
1377 |
-
|
|
|
1378 |
)
|
1379 |
-
|
1380 |
-
|
1381 |
-
|
1382 |
-
|
|
|
1383 |
)
|
1384 |
|
1385 |
# expand encoder attention mask
|
1386 |
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1387 |
-
|
1388 |
-
|
1389 |
-
|
1390 |
-
|
1391 |
-
# the manual implementation that requires a 4D causal mask in all cases.
|
1392 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1393 |
-
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
1394 |
-
encoder_attention_mask,
|
1395 |
-
inputs_embeds.dtype,
|
1396 |
-
tgt_len=input_shape[-1],
|
1397 |
-
)
|
1398 |
-
else:
|
1399 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1400 |
-
encoder_attention_mask = _prepare_4d_attention_mask(
|
1401 |
-
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1402 |
-
)
|
1403 |
|
1404 |
# embed positions
|
1405 |
positions = self.embed_positions(
|
@@ -1470,7 +1124,7 @@ class IndicTransDecoder(IndicTransPreTrainedModel):
|
|
1470 |
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1471 |
create_custom_forward(decoder_layer),
|
1472 |
hidden_states,
|
1473 |
-
|
1474 |
encoder_hidden_states,
|
1475 |
encoder_attention_mask,
|
1476 |
head_mask[idx] if head_mask is not None else None,
|
@@ -1482,7 +1136,7 @@ class IndicTransDecoder(IndicTransPreTrainedModel):
|
|
1482 |
else:
|
1483 |
layer_outputs = decoder_layer(
|
1484 |
hidden_states,
|
1485 |
-
attention_mask=
|
1486 |
encoder_hidden_states=encoder_hidden_states,
|
1487 |
encoder_attention_mask=encoder_attention_mask,
|
1488 |
layer_head_mask=(
|
@@ -1739,7 +1393,7 @@ class IndicTransForConditionalGeneration(IndicTransPreTrainedModel):
|
|
1739 |
masked_lm_loss = F.cross_entropy(
|
1740 |
input=lm_logits.view(-1, self.config.decoder_vocab_size),
|
1741 |
target=labels.view(-1),
|
1742 |
-
ignore_index
|
1743 |
label_smoothing=self._label_smoothing,
|
1744 |
)
|
1745 |
|
|
|
23 |
from torch.nn import functional as F
|
24 |
|
25 |
from transformers.activations import ACT2FN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
27 |
from transformers.modeling_outputs import (
|
28 |
BaseModelOutput,
|
29 |
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
Seq2SeqLMOutput,
|
31 |
+
Seq2SeqModelOutput,
|
32 |
)
|
33 |
|
34 |
+
from transformers.utils import logging
|
|
|
|
|
|
|
|
|
|
|
35 |
from transformers.modeling_utils import PreTrainedModel
|
36 |
|
37 |
from .configuration_indictrans import IndicTransConfig
|
|
|
39 |
|
40 |
logger = logging.get_logger(__name__)
|
41 |
|
42 |
+
_CONFIG_FOR_DOC = "IndicTransConfig"
|
43 |
|
44 |
+
INDICTRANS_PRETRAINED_MODEL_ARCHIVE_LIST = [""]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
|
47 |
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
|
|
63 |
return shifted_input_ids
|
64 |
|
65 |
|
66 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
67 |
+
def _make_causal_mask(
|
68 |
+
input_ids_shape: torch.Size,
|
69 |
+
dtype: torch.dtype,
|
70 |
+
device: torch.device,
|
71 |
+
past_key_values_length: int = 0,
|
72 |
+
):
|
73 |
+
"""
|
74 |
+
Make causal mask used for bi-directional self-attention.
|
75 |
+
"""
|
76 |
+
bsz, tgt_len = input_ids_shape
|
77 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
78 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
79 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
80 |
+
mask = mask.to(dtype)
|
81 |
+
|
82 |
+
if past_key_values_length > 0:
|
83 |
+
mask = torch.cat(
|
84 |
+
[
|
85 |
+
torch.zeros(
|
86 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device
|
87 |
+
),
|
88 |
+
mask,
|
89 |
+
],
|
90 |
+
dim=-1,
|
91 |
+
)
|
92 |
+
return mask[None, None, :, :].expand(
|
93 |
+
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
98 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
99 |
+
"""
|
100 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
101 |
+
"""
|
102 |
+
bsz, src_len = mask.size()
|
103 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
104 |
+
|
105 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
106 |
+
|
107 |
+
inverted_mask = 1.0 - expanded_mask
|
108 |
+
|
109 |
+
return inverted_mask.masked_fill(
|
110 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
def create_position_ids_from_input_ids(
|
115 |
input_ids, padding_idx, past_key_values_length=0
|
116 |
):
|
|
|
247 |
dropout: float = 0.0,
|
248 |
is_decoder: bool = False,
|
249 |
bias: bool = True,
|
|
|
|
|
250 |
):
|
251 |
super().__init__()
|
252 |
self.embed_dim = embed_dim
|
253 |
self.num_heads = num_heads
|
254 |
self.dropout = dropout
|
255 |
self.head_dim = embed_dim // num_heads
|
|
|
256 |
|
257 |
if (self.head_dim * num_heads) != self.embed_dim:
|
258 |
raise ValueError(
|
|
|
261 |
)
|
262 |
self.scaling = self.head_dim**-0.5
|
263 |
self.is_decoder = is_decoder
|
|
|
264 |
|
265 |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
266 |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
|
|
402 |
attn_output = self.out_proj(attn_output)
|
403 |
|
404 |
return attn_output, attn_weights_reshaped, past_key_value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->IndicTrans
|
408 |
class IndicTransEncoderLayer(nn.Module):
|
409 |
def __init__(self, config: IndicTransConfig):
|
410 |
super().__init__()
|
411 |
self.embed_dim = config.encoder_embed_dim
|
412 |
+
self.self_attn = IndicTransAttention(
|
413 |
embed_dim=self.embed_dim,
|
414 |
num_heads=config.encoder_attention_heads,
|
415 |
dropout=config.attention_dropout,
|
|
|
416 |
)
|
417 |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
418 |
self.dropout = config.dropout
|
|
|
490 |
super().__init__()
|
491 |
self.embed_dim = config.decoder_embed_dim
|
492 |
|
493 |
+
self.self_attn = IndicTransAttention(
|
494 |
embed_dim=self.embed_dim,
|
495 |
num_heads=config.decoder_attention_heads,
|
496 |
dropout=config.attention_dropout,
|
497 |
is_decoder=True,
|
|
|
|
|
498 |
)
|
499 |
self.dropout = config.dropout
|
500 |
self.activation_fn = ACT2FN[config.activation_function]
|
501 |
self.activation_dropout = config.activation_dropout
|
502 |
|
503 |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
504 |
+
self.encoder_attn = IndicTransAttention(
|
505 |
self.embed_dim,
|
506 |
config.decoder_attention_heads,
|
507 |
dropout=config.attention_dropout,
|
508 |
is_decoder=True,
|
|
|
509 |
)
|
510 |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
511 |
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
|
|
693 |
nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
694 |
)
|
695 |
|
|
|
|
|
|
|
696 |
self.gradient_checkpointing = False
|
697 |
# Initialize weights and apply final processing
|
698 |
self.post_init()
|
|
|
779 |
|
780 |
hidden_states = inputs_embeds + embed_pos
|
781 |
if self.layernorm_embedding is not None:
|
782 |
+
x = self.layernorm_embedding(hidden_states)
|
783 |
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
|
784 |
|
785 |
+
# expand attention_mask
|
786 |
if attention_mask is not None:
|
787 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
788 |
+
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
789 |
|
790 |
encoder_states = () if output_hidden_states else None
|
791 |
all_attentions = () if output_attentions else None
|
|
|
909 |
nn.LayerNorm(embed_dim) if config.layernorm_embedding else None
|
910 |
)
|
911 |
|
|
|
|
|
|
|
912 |
self.gradient_checkpointing = False
|
913 |
# Initialize weights and apply final processing
|
914 |
self.post_init()
|
|
|
1031 |
if inputs_embeds is None:
|
1032 |
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1033 |
|
1034 |
+
# create causal mask
|
1035 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1036 |
+
combined_attention_mask = None
|
1037 |
+
if input_shape[-1] > 1:
|
1038 |
+
combined_attention_mask = _make_causal_mask(
|
|
|
|
|
|
|
|
|
1039 |
input_shape,
|
1040 |
+
inputs_embeds.dtype,
|
1041 |
+
device=inputs_embeds.device,
|
1042 |
+
past_key_values_length=past_key_values_length,
|
1043 |
)
|
1044 |
+
|
1045 |
+
if attention_mask is not None and combined_attention_mask is not None:
|
1046 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1047 |
+
combined_attention_mask = combined_attention_mask + _expand_mask(
|
1048 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1049 |
)
|
1050 |
|
1051 |
# expand encoder attention mask
|
1052 |
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1053 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1054 |
+
encoder_attention_mask = _expand_mask(
|
1055 |
+
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1056 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1057 |
|
1058 |
# embed positions
|
1059 |
positions = self.embed_positions(
|
|
|
1124 |
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1125 |
create_custom_forward(decoder_layer),
|
1126 |
hidden_states,
|
1127 |
+
combined_attention_mask,
|
1128 |
encoder_hidden_states,
|
1129 |
encoder_attention_mask,
|
1130 |
head_mask[idx] if head_mask is not None else None,
|
|
|
1136 |
else:
|
1137 |
layer_outputs = decoder_layer(
|
1138 |
hidden_states,
|
1139 |
+
attention_mask=combined_attention_mask,
|
1140 |
encoder_hidden_states=encoder_hidden_states,
|
1141 |
encoder_attention_mask=encoder_attention_mask,
|
1142 |
layer_head_mask=(
|
|
|
1393 |
masked_lm_loss = F.cross_entropy(
|
1394 |
input=lm_logits.view(-1, self.config.decoder_vocab_size),
|
1395 |
target=labels.view(-1),
|
1396 |
+
ignore_index=self.config.pad_token_id,
|
1397 |
label_smoothing=self._label_smoothing,
|
1398 |
)
|
1399 |
|
special_tokens_map.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": "<s>",
|
3 |
-
"eos_token": "</s>",
|
4 |
-
"pad_token": "<pad>",
|
5 |
-
"unk_token": "<unk>"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenization_indictrans.py
DELETED
@@ -1,261 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
|
4 |
-
from typing import Dict, List, Optional, Union, Tuple
|
5 |
-
|
6 |
-
from transformers.utils import logging
|
7 |
-
from sentencepiece import SentencePieceProcessor
|
8 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
9 |
-
|
10 |
-
|
11 |
-
logger = logging.get_logger(__name__)
|
12 |
-
|
13 |
-
SPIECE_UNDERLINE = "▁"
|
14 |
-
|
15 |
-
SPECIAL_TAGS = {
|
16 |
-
"_bt_",
|
17 |
-
"_ft_",
|
18 |
-
"asm_Beng",
|
19 |
-
"awa_Deva",
|
20 |
-
"ben_Beng",
|
21 |
-
"bho_Deva",
|
22 |
-
"brx_Deva",
|
23 |
-
"doi_Deva",
|
24 |
-
"eng_Latn",
|
25 |
-
"gom_Deva",
|
26 |
-
"gon_Deva",
|
27 |
-
"guj_Gujr",
|
28 |
-
"hin_Deva",
|
29 |
-
"hne_Deva",
|
30 |
-
"kan_Knda",
|
31 |
-
"kas_Arab",
|
32 |
-
"kas_Deva",
|
33 |
-
"kha_Latn",
|
34 |
-
"lus_Latn",
|
35 |
-
"mag_Deva",
|
36 |
-
"mai_Deva",
|
37 |
-
"mal_Mlym",
|
38 |
-
"mar_Deva",
|
39 |
-
"mni_Beng",
|
40 |
-
"mni_Mtei",
|
41 |
-
"npi_Deva",
|
42 |
-
"ory_Orya",
|
43 |
-
"pan_Guru",
|
44 |
-
"san_Deva",
|
45 |
-
"sat_Olck",
|
46 |
-
"snd_Arab",
|
47 |
-
"snd_Deva",
|
48 |
-
"tam_Taml",
|
49 |
-
"tel_Telu",
|
50 |
-
"urd_Arab",
|
51 |
-
"unr_Deva",
|
52 |
-
}
|
53 |
-
|
54 |
-
VOCAB_FILES_NAMES = {
|
55 |
-
"src_vocab_fp": "dict.SRC.json",
|
56 |
-
"tgt_vocab_fp": "dict.TGT.json",
|
57 |
-
"src_spm_fp": "model.SRC",
|
58 |
-
"tgt_spm_fp": "model.TGT",
|
59 |
-
}
|
60 |
-
|
61 |
-
|
62 |
-
class IndicTransTokenizer(PreTrainedTokenizer):
|
63 |
-
_added_tokens_encoder = {}
|
64 |
-
_added_tokens_decoder = {}
|
65 |
-
|
66 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
67 |
-
model_input_names = ["input_ids", "attention_mask"]
|
68 |
-
|
69 |
-
def __init__(
|
70 |
-
self,
|
71 |
-
src_vocab_fp=None,
|
72 |
-
tgt_vocab_fp=None,
|
73 |
-
src_spm_fp=None,
|
74 |
-
tgt_spm_fp=None,
|
75 |
-
unk_token="<unk>",
|
76 |
-
bos_token="<s>",
|
77 |
-
eos_token="</s>",
|
78 |
-
pad_token="<pad>",
|
79 |
-
do_lower_case=False,
|
80 |
-
**kwargs,
|
81 |
-
):
|
82 |
-
|
83 |
-
self.src = True
|
84 |
-
|
85 |
-
self.src_vocab_fp = src_vocab_fp
|
86 |
-
self.tgt_vocab_fp = tgt_vocab_fp
|
87 |
-
self.src_spm_fp = src_spm_fp
|
88 |
-
self.tgt_spm_fp = tgt_spm_fp
|
89 |
-
|
90 |
-
self.unk_token = unk_token
|
91 |
-
self.pad_token = pad_token
|
92 |
-
self.eos_token = eos_token
|
93 |
-
self.bos_token = bos_token
|
94 |
-
|
95 |
-
self.encoder = self._load_json(self.src_vocab_fp)
|
96 |
-
if self.unk_token not in self.encoder:
|
97 |
-
raise KeyError("<unk> token must be in vocab")
|
98 |
-
assert self.pad_token in self.encoder
|
99 |
-
self.encoder_rev = {v: k for k, v in self.encoder.items()}
|
100 |
-
|
101 |
-
self.decoder = self._load_json(self.tgt_vocab_fp)
|
102 |
-
if self.unk_token not in self.encoder:
|
103 |
-
raise KeyError("<unk> token must be in vocab")
|
104 |
-
assert self.pad_token in self.encoder
|
105 |
-
self.decoder_rev = {v: k for k, v in self.decoder.items()}
|
106 |
-
|
107 |
-
# load SentencePiece model for pre-processing
|
108 |
-
self.src_spm = self._load_spm(self.src_spm_fp)
|
109 |
-
self.tgt_spm = self._load_spm(self.tgt_spm_fp)
|
110 |
-
|
111 |
-
self.current_spm = self.src_spm
|
112 |
-
self.current_encoder = self.encoder
|
113 |
-
self.current_encoder_rev = self.encoder_rev
|
114 |
-
|
115 |
-
self.unk_token_id = self.encoder[self.unk_token]
|
116 |
-
self.pad_token_id = self.encoder[self.pad_token]
|
117 |
-
self.eos_token_id = self.encoder[self.eos_token]
|
118 |
-
self.bos_token_id = self.encoder[self.bos_token]
|
119 |
-
|
120 |
-
super().__init__(
|
121 |
-
src_vocab_file=self.src_vocab_fp,
|
122 |
-
tgt_vocab_file=self.src_vocab_fp,
|
123 |
-
do_lower_case=do_lower_case,
|
124 |
-
unk_token=unk_token,
|
125 |
-
bos_token=bos_token,
|
126 |
-
eos_token=eos_token,
|
127 |
-
pad_token=pad_token,
|
128 |
-
**kwargs,
|
129 |
-
)
|
130 |
-
|
131 |
-
def add_new_special_tags(self, new_tags: List[str]):
|
132 |
-
SPECIAL_TAGS.update(new_tags)
|
133 |
-
|
134 |
-
def _switch_to_input_mode(self):
|
135 |
-
self.src = True
|
136 |
-
self.padding_side = "left"
|
137 |
-
self.current_spm = self.src_spm
|
138 |
-
self.current_encoder = self.encoder
|
139 |
-
self.current_encoder_rev = self.encoder_rev
|
140 |
-
|
141 |
-
def _switch_to_target_mode(self):
|
142 |
-
self.src = False
|
143 |
-
self.padding_side = "right"
|
144 |
-
self.current_spm = self.tgt_spm
|
145 |
-
self.current_encoder = self.decoder
|
146 |
-
self.current_encoder_rev = self.decoder_rev
|
147 |
-
|
148 |
-
def _load_spm(self, path: str) -> SentencePieceProcessor:
|
149 |
-
return SentencePieceProcessor(model_file=path)
|
150 |
-
|
151 |
-
def _save_json(self, data, path: str) -> None:
|
152 |
-
with open(path, "w", encoding="utf-8") as f:
|
153 |
-
json.dump(data, f, indent=2)
|
154 |
-
|
155 |
-
def _load_json(self, path: str) -> Union[Dict, List]:
|
156 |
-
with open(path, "r", encoding="utf-8") as f:
|
157 |
-
return json.load(f)
|
158 |
-
|
159 |
-
def _split_tags(self, tokens: List[str]) -> Tuple[List[str], List[str]]:
|
160 |
-
tags = [token for token in tokens if token in SPECIAL_TAGS]
|
161 |
-
tokens = [token for token in tokens if token not in SPECIAL_TAGS]
|
162 |
-
return tags, tokens
|
163 |
-
|
164 |
-
def _split_pads(self, tokens: List[str]) -> Tuple[List[str], List[str]]:
|
165 |
-
pads = [token for token in tokens if token == self.pad_token]
|
166 |
-
tokens = [token for token in tokens if token != self.pad_token]
|
167 |
-
return pads, tokens
|
168 |
-
|
169 |
-
@property
|
170 |
-
def src_vocab_size(self) -> int:
|
171 |
-
return len(self.encoder)
|
172 |
-
|
173 |
-
@property
|
174 |
-
def tgt_vocab_size(self) -> int:
|
175 |
-
return len(self.decoder)
|
176 |
-
|
177 |
-
def get_src_vocab(self) -> Dict[str, int]:
|
178 |
-
return dict(self.encoder, **self.added_tokens_encoder)
|
179 |
-
|
180 |
-
def get_tgt_vocab(self) -> Dict[str, int]:
|
181 |
-
return dict(self.decoder, **self.added_tokens_decoder)
|
182 |
-
|
183 |
-
# hack override
|
184 |
-
def get_vocab(self) -> Dict[str, int]:
|
185 |
-
return self.get_src_vocab()
|
186 |
-
|
187 |
-
# hack override
|
188 |
-
@property
|
189 |
-
def vocab_size(self) -> int:
|
190 |
-
return self.src_vocab_size
|
191 |
-
|
192 |
-
def _convert_token_to_id(self, token: str) -> int:
|
193 |
-
"""Converts an token (str) into an index (integer) using the source/target vocabulary map."""
|
194 |
-
return self.current_encoder.get(token, self.current_encoder[self.unk_token])
|
195 |
-
|
196 |
-
def _convert_id_to_token(self, index: int) -> str:
|
197 |
-
"""Converts an index (integer) into a token (str) using the source/target vocabulary map."""
|
198 |
-
return self.current_encoder_rev.get(index, self.unk_token)
|
199 |
-
|
200 |
-
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
201 |
-
"""Uses sentencepiece model for detokenization"""
|
202 |
-
pads, tokens = self._split_pads(tokens)
|
203 |
-
|
204 |
-
if self.src:
|
205 |
-
|
206 |
-
tags, non_tags = self._split_tags(tokens)
|
207 |
-
|
208 |
-
return (
|
209 |
-
" ".join(pads)
|
210 |
-
+ " "
|
211 |
-
+ " ".join(tags)
|
212 |
-
+ " "
|
213 |
-
+ "".join(non_tags).replace(SPIECE_UNDERLINE, " ").strip()
|
214 |
-
)
|
215 |
-
|
216 |
-
return (
|
217 |
-
"".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
218 |
-
+ " "
|
219 |
-
+ " ".join(pads)
|
220 |
-
)
|
221 |
-
|
222 |
-
def _tokenize(self, text) -> List[str]:
|
223 |
-
if self.src:
|
224 |
-
tokens = text.split(" ")
|
225 |
-
tags, non_tags = self._split_tags(tokens)
|
226 |
-
text = " ".join(non_tags)
|
227 |
-
tokens = self.current_spm.EncodeAsPieces(text)
|
228 |
-
return tags + tokens
|
229 |
-
else:
|
230 |
-
return self.current_spm.EncodeAsPieces(text)
|
231 |
-
|
232 |
-
def build_inputs_with_special_tokens(
|
233 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
234 |
-
) -> List[int]:
|
235 |
-
if token_ids_1 is None:
|
236 |
-
return token_ids_0 + [self.eos_token_id]
|
237 |
-
# We don't expect to process pairs, but leave the pair logic for API consistency
|
238 |
-
return token_ids_0 + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
|
239 |
-
|
240 |
-
def save_vocabulary(
|
241 |
-
self, save_directory: str, filename_prefix: Optional[str] = None
|
242 |
-
) -> Tuple[str]:
|
243 |
-
if not os.path.isdir(save_directory):
|
244 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
245 |
-
return
|
246 |
-
|
247 |
-
src_spm_fp = os.path.join(save_directory, "model.SRC")
|
248 |
-
tgt_spm_fp = os.path.join(save_directory, "model.TGT")
|
249 |
-
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
|
250 |
-
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")
|
251 |
-
|
252 |
-
self._save_json(self.encoder, src_vocab_fp)
|
253 |
-
self._save_json(self.decoder, tgt_vocab_fp)
|
254 |
-
|
255 |
-
with open(src_spm_fp, "wb") as f:
|
256 |
-
f.write(self.src_spm.serialized_model_proto())
|
257 |
-
|
258 |
-
with open(tgt_spm_fp, "wb") as f:
|
259 |
-
f.write(self.tgt_spm.serialized_model_proto())
|
260 |
-
|
261 |
-
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer_config.json
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"0": {
|
4 |
-
"content": "<s>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"1": {
|
12 |
-
"content": "<pad>",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
},
|
19 |
-
"2": {
|
20 |
-
"content": "</s>",
|
21 |
-
"lstrip": false,
|
22 |
-
"normalized": false,
|
23 |
-
"rstrip": false,
|
24 |
-
"single_word": false,
|
25 |
-
"special": true
|
26 |
-
},
|
27 |
-
"3": {
|
28 |
-
"content": "<unk>",
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": false,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false,
|
33 |
-
"special": true
|
34 |
-
}
|
35 |
-
},
|
36 |
-
"bos_token": "<s>",
|
37 |
-
"clean_up_tokenization_spaces": true,
|
38 |
-
"do_lower_case": false,
|
39 |
-
"eos_token": "</s>",
|
40 |
-
"model_max_length": 256,
|
41 |
-
"pad_token": "<pad>",
|
42 |
-
"name_or_path": "ai4bharat/indictrans2-en-indic-1B",
|
43 |
-
"tokenizer_class": "IndicTransTokenizer",
|
44 |
-
"auto_map": {
|
45 |
-
"AutoTokenizer": [
|
46 |
-
"tokenization_indictrans.IndicTransTokenizer",
|
47 |
-
null
|
48 |
-
]
|
49 |
-
},
|
50 |
-
"unk_token": "<unk>"
|
51 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|