File size: 3,620 Bytes
e511f35 b52b47e 6b17c8c 30754bf b52b47e 6b17c8c e511f35 30754bf e511f35 b52b47e e511f35 b52b47e e511f35 b52b47e e511f35 f56bea9 b52b47e e511f35 b52b47e e511f35 f56bea9 30754bf e511f35 b52b47e 30754bf e511f35 30754bf e511f35 30754bf e511f35 30754bf e511f35 30754bf e511f35 30754bf e511f35 30754bf e511f35 30754bf e511f35 30754bf e511f35 901ba01 e511f35 901ba01 e511f35 30754bf e511f35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
"""A simple script to run a Flow that can be used for development and debugging."""
import os
import hydra
import aiflows
from aiflows.backends.api_info import ApiInfo
from aiflows.utils.general_helpers import read_yaml_file, quick_load_api_keys
from aiflows import logging
from aiflows.flow_cache import CACHING_PARAMETERS, clear_cache
from aiflows.utils import serve_utils
from aiflows.workers import run_dispatch_worker_thread
from aiflows.messages import FlowMessage
from aiflows.interfaces import KeyInterface
from aiflows.utils.colink_utils import start_colink_server
from aiflows.workers import run_dispatch_worker_thread
CACHING_PARAMETERS.do_caching = False # Set to True in order to disable caching
# clear_cache() # Uncomment this line to clear the cache
logging.set_verbosity_debug()
dependencies = [
{"url": "aiflows/AutoGPTFlowModule", "revision": os.getcwd()},
{"url": "aiflows/LCToolFlowModule", "revision": "coflows"},
]
from aiflows import flow_verse
flow_verse.sync_dependencies(dependencies)
if __name__ == "__main__":
#1. ~~~~~ Set up a colink server ~~~~
FLOW_MODULES_PATH = "./"
cl = start_colink_server()
#2. ~~~~~Load flow config~~~~~~
root_dir = "."
cfg_path = os.path.join(root_dir, "demo.yaml")
cfg = read_yaml_file(cfg_path)
#2.1 ~~~ Set the API information ~~~
# OpenAI backend
api_information = [ApiInfo(backend_used="openai",
api_key = os.getenv("OPENAI_API_KEY"))]
# # Azure backend
# api_information = ApiInfo(backend_used = "azure",
# api_base = os.getenv("AZURE_API_BASE"),
# api_key = os.getenv("AZURE_OPENAI_KEY"),
# api_version = os.getenv("AZURE_API_VERSION") )
quick_load_api_keys(cfg, api_information, key="api_infos")
#3. ~~~~ Serve The Flow ~~~~
serve_utils.recursive_serve_flow(
cl = cl,
flow_type="AutoGPTFlowModule",
default_config=cfg,
default_state=None,
default_dispatch_point="coflows_dispatch"
)
#4. ~~~~~Start A Worker Thread~~~~~
run_dispatch_worker_thread(cl, dispatch_point="coflows_dispatch", flow_modules_base_path=FLOW_MODULES_PATH)
#5. ~~~~~Mount the flow and get its proxy~~~~~~
proxy_flow = serve_utils.recursive_mount(
cl=cl,
client_id="local",
flow_type="AutoGPTFlowModule",
config_overrides=None,
initial_state=None,
dispatch_point_override=None,
)
#6. ~~~ Get the data ~~~
data = {
"id": 0,
"goal": "Answer the following question: What is the profession and date of birth of Michael Jordan?",
}
#option1: use the FlowMessage class
input_message = FlowMessage(
data=data,
)
#option2: use the proxy_flow
#input_message = proxy_flow.package_input_message(data = data)
#7. ~~~ Run inference ~~~
future = proxy_flow.get_reply_future(input_message)
#uncomment this line if you would like to get the full message back
#reply_message = future.get_message()
reply_data = future.get_data()
# ~~~ Print the output ~~~
print("~~~~~~Reply~~~~~~")
print(reply_data)
#8. ~~~~ (Optional) apply output interface on reply ~~~~
# output_interface = KeyInterface(
# keys_to_rename={"api_output": "answer"},
# )
# print("Output: ", output_interface(reply_data))
#9. ~~~~~Optional: Unserve Flow~~~~~~
# serve_utils.delete_served_flow(cl, "FlowModule")
|