Edit model card

wav2vec2-large-xlsr-53-th

Finetuning wav2vec2-large-xlsr-53 on Thai Common Voice 7.0

Read more on our blog

We finetune wav2vec2-large-xlsr-53 based on Fine-tuning Wav2Vec2 for English ASR using Thai examples of Common Voice Corpus 7.0. The notebooks and scripts can be found in vistec-ai/wav2vec2-large-xlsr-53-th. The pretrained model and processor can be found at airesearch/wav2vec2-large-xlsr-53-th.

robust-speech-event

Add syllable_tokenize, word_tokenize (PyThaiNLP) and deepcut tokenizers to eval.py from robust-speech-event

> python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config th --split test --log_outputs --thai_tokenizer newmm/syllable/deepcut/cer

Eval results on Common Voice 7 "test":

WER PyThaiNLP 2.3.1 WER deepcut SER CER
Only Tokenization 0.9524% 2.5316% 1.2346% 0.1623%
Cleaning rules and Tokenization TBD TBD TBD TBD

Usage

#load pretrained processor and model
processor = Wav2Vec2Processor.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th")
model = Wav2Vec2ForCTC.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th")

#function to resample to 16_000
def speech_file_to_array_fn(batch, 
                            text_col="sentence", 
                            fname_col="path",
                            resampling_to=16000):
    speech_array, sampling_rate = torchaudio.load(batch[fname_col])
    resampler=torchaudio.transforms.Resample(sampling_rate, resampling_to)
    batch["speech"] = resampler(speech_array)[0].numpy()
    batch["sampling_rate"] = resampling_to
    batch["target_text"] = batch[text_col]
    return batch

#get 2 examples as sample input
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

#infer
with torch.no_grad():
    logits = model(inputs.input_values,).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

>> Prediction: ['เนเธฅเธฐ เน€เธ‚เธฒ เธเน‡ เธชเธฑเธกเธœเธฑเธช เธ”เธตเธšเธธเธ', 'เธ„เธธเธ“ เธชเธฒเธกเธฒเธฃเธ– เธฃเธฑเธšเธ—เธฃเธฒเธš เน€เธกเธทเนˆเธญ เธ‚เน‰เธญเธ„เธงเธฒเธก เธ™เธตเน‰ เธ–เธนเธ เธญเนˆเธฒเธ™ เนเธฅเน‰เธง']
>> Reference: ['เนเธฅเธฐเน€เธ‚เธฒเธเน‡เธชเธฑเธกเธœเธฑเธชเธ”เธตเธšเธธเธ', 'เธ„เธธเธ“เธชเธฒเธกเธฒเธฃเธ–เธฃเธฑเธšเธ—เธฃเธฒเธšเน€เธกเธทเนˆเธญเธ‚เน‰เธญเธ„เธงเธฒเธกเธ™เธตเน‰เธ–เธนเธเธญเนˆเธฒเธ™เนเธฅเน‰เธง']

Datasets

Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) contains 133 validated hours of Thai (255 total hours) at 5GB. We pre-tokenize with pythainlp.tokenize.word_tokenize. We preprocess the dataset using cleaning rules described in notebooks/cv-preprocess.ipynb by @tann9949. We then deduplicate and split as described in ekapolc/Thai_commonvoice_split in order to 1) avoid data leakage due to random splits after cleaning in Common Voice Corpus 7.0 and 2) preserve the majority of the data for the training set. The dataset loading script is scripts/th_common_voice_70.py. You can use this scripts together with train_cleand.tsv, validation_cleaned.tsv and test_cleaned.tsv to have the same splits as we do. The resulting dataset is as follows:

DatasetDict({
    train: Dataset({
        features: ['path', 'sentence'],
        num_rows: 86586
    })
    test: Dataset({
        features: ['path', 'sentence'],
        num_rows: 2502
    })
    validation: Dataset({
        features: ['path', 'sentence'],
        num_rows: 3027
    })
})

Training

We fintuned using the following configuration on a single V100 GPU and chose the checkpoint with the lowest validation loss. The finetuning script is scripts/wav2vec2_finetune.py

# create model
model = Wav2Vec2ForCTC.from_pretrained(
    "facebook/wav2vec2-large-xlsr-53",
    attention_dropout=0.1,
    hidden_dropout=0.1,
    feat_proj_dropout=0.0,
    mask_time_prob=0.05,
    layerdrop=0.1,
    gradient_checkpointing=True,
    ctc_loss_reduction="mean",
    pad_token_id=processor.tokenizer.pad_token_id,
    vocab_size=len(processor.tokenizer)
)
model.freeze_feature_extractor()
training_args = TrainingArguments(
    output_dir="../data/wav2vec2-large-xlsr-53-thai",
    group_by_length=True,
    per_device_train_batch_size=32,
    gradient_accumulation_steps=1,
    per_device_eval_batch_size=16,
    metric_for_best_model='wer',
    evaluation_strategy="steps",
    eval_steps=1000,
    logging_strategy="steps",
    logging_steps=1000,
    save_strategy="steps",
    save_steps=1000,
    num_train_epochs=100,
    fp16=True,
    learning_rate=1e-4,
    warmup_steps=1000,
    save_total_limit=3,
    report_to="tensorboard"
)

Evaluation

We benchmark on the test set using WER with words tokenized by PyThaiNLP 2.3.1 and deepcut, and CER. We also measure performance when spell correction using TNC ngrams is applied. Evaluation codes can be found in notebooks/wav2vec2_finetuning_tutorial.ipynb. Benchmark is performed on test-unique split.

WER PyThaiNLP 2.3.1 WER deepcut CER
Kaldi from scratch 23.04 7.57
Ours without spell correction 13.634024 8.152052 2.813019
Ours with spell correction 17.996397 14.167975 5.225761
Google Web Speech APIโ€ป 13.711234 10.860058 7.357340
Microsoft Bing Speech APIโ€ป 12.578819 9.620991 5.016620
Amazon Transcribeโ€ป 21.86334 14.487553 7.077562
NECTEC AI for Thai Partii APIโ€ป 20.105887 15.515631 9.551027

โ€ป APIs are not finetuned with Common Voice 7.0 data

LICENSE

cc-by-sa 4.0

Ackowledgements

Downloads last month
156,811
Inference API
or

Model tree for airesearch/wav2vec2-large-xlsr-53-th

Finetunes
4 models

Dataset used to train airesearch/wav2vec2-large-xlsr-53-th

Spaces using airesearch/wav2vec2-large-xlsr-53-th 6

Evaluation results