ajibs75's picture
Update README.md
1b2c72d verified
|
raw
history blame
2.5 kB
metadata
base_model: openai/whisper-small
datasets:
  - mozilla-foundation/common_voice_11_0
language:
  - yo
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: Whisper Small Yo - Bola Ologundudu
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: yo
          split: None
          args: 'config: yo, split: test'
        metrics:
          - type: wer
            value: 70.61345018098686
            name: Wer

Whisper Small Yoruba - Bola Ologundudu

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2225
  • Wer: 70.6135

Model description

from transformers import pipeline import torch

modelName="ajibs75/whisper-small-yoruba" device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline(task="automatic-speech-recognition",model=modelName,chunk_length_s=30,device=device,) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="yo", task="transcribe")

audio = "sample.mp3" text = pipe(audio) transacribed_audio = text["text"] print(transacribed_audio)

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.066 7.6923 1000 0.8962 74.0141
0.004 15.3846 2000 1.1411 71.6613
0.0004 23.0769 3000 1.1959 70.6516
0.0003 30.7692 4000 1.2225 70.6135

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1